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ABSTRACT
Maliciously-overwritten function pointers in C programs often lead
to arbitrary code execution. In principle, forward CFI schemes mit-
igate this problem by restricting indirect function calls to valid call
targets only. However, existing forward CFI schemes either depend
on specific hardware capabilities, or are too permissive (weakening
security guarantees) or too strict (breaking compatibility).

We present TyPro, a Clang-based forward CFI scheme based
on type propagation. TyPro uses static analysis to follow function
pointer types through C programs, and can determine the possible
target functions for indirect calls at compile time with high preci-
sion. TyPro does not underestimate possible targets and does not
break real-world programs, including those relying on dynamically-
loaded code. TyPro has no runtime overhead on average and does
not depend on architecture or special hardware features.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Systems security; • Software and its engineering→ Automated
static analysis.
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1 INTRODUCTION
C programs are ubiquitous, and so are memory-corruption vulnera-
bilities in them. Code-reuse attacks exploit these vulnerabilities by
overwriting return addresses or function pointers with references to
malicious code, ultimately gaining arbitrary code execution. Con-
trol Flow Integrity (CFI) aims to mitigate code-reuse attacks by
enforcing that return and call targets are valid [1]. CFI protects two

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3564627

types of control transfers: (i) the return address of any function on
the stack (backward CFI ) and (ii) the targets of indirect calls (for-
ward CFI ). Given that backward CFI has reached production grade
and gained hardware support [38, 43], and seeing that a plethora
of works protects indirect calls in C++ [2, 4, 6, 13, 21, 31], in this
paper, we focus on forward CFI in C programs.

In the C language, an indirect call invokes a function pointer.
Forward CFI schemes check this pointer before the call, ensuring it
points to a “valid” target. To this end, industry-grade and widely de-
ployed forward CFI schemes (Microsoft’s Control Flow Guard [28],
or Intel CET’s indirect branch tracking [38]) merely test if any valid
function is called. This crude over-approximation enables attackers
to call functions that are not reachable from the given call site.
Therefore, more precise forward CFI schemes compute a tailored
target set for each indirect call, containing all function pointers that
are allowed for this call. On the one hand, the target set must be
large enough to allow every intended function pointer. Otherwise,
the protected programmay crash. On the other hand, the target sets
must be minimal, as every unnecessary target represents a gadget
that attackers might use in code-reuse attacks. The most promising
example of a more precise scheme is Clang CFI [47]. It checks the C
type of the called function and compares it to the expected call type.
Such compiler-integrated analyses allow for easy integration in
off-the-shelf software—significantly easing wide CFI deployment.

Unfortunately, as we will show in Section 6.1, Clang CFI and
its strict type checks regularly miss valid call targets. Ultimately,
this impreciseness may lead to unforeseen program crashes during
runtime, which cannot be detected beforehand. That is, whether or
not a CFI-protected program crashes is only known (at some point)
during runtime. Due to these deficiencies, even hardened OSes like
HardenedBSD [17] cannot deploy Clang CFI to all applications.

Clearly, this is an unsatisfying state. As a non-solution, one could
revert to more permissive CFI schemes. For example, IFCC [49] just
compares the number of arguments, but not their types. But this
policy allows many unnecessary targets, bloating the surface of
code-reuse gadgets (cf. Section 6.2). Seeing that such weaker CFI
designs unnecessarily undermine security, we seek to understand
the root causes of Clang CFI’s failures. We identify three concep-
tual reasons why Clang CFI is incompatible with popular software
projects such as lighttpd, nginx, or redis. First, Clang CFI lacks type
propagation. Therefore, it does not allow casts to/from undefined
types (void *) that programmers often use to build inheritance-like
constructs. Second, Clang CFI does not support variadic functions.
Third, Clang CFI does not support dynamic linking.

As a workaround, developers could try to rewrite programs that
cause CFI incompatibilities. However, this is a non-trivial task,
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requires significant code revisions, and comes at the price of losing
flexibility. For example, plugin interfaces (e.g., in nginx and lighttpd)
heavily rely on variadic functions or generic APIs that operate on
void * pointers. Furthermore, the lack of support for dynamic
linking impedes CFI adoption and cannot be “fixed” by refactoring.

Alternatively, and this being the idea of this work, we can de-
sign a CFI system for Clang that supports the above compatibility
features. However, the C standard foresees concepts that impose
challenges, such as (i) function pointer casts, (ii) function pointers
that are part of compound data types such as struct and union,
or (iii) function pointers that are propagated through other indi-
rect calls. Supporting these features is vital to not break programs.
Moreover, any function pointer analysis must be context-sensitive
to refine the set of valid call targets. That is, not only do we have to
match function types, but we also have to verify that a given pointer
can ever be used as an indirect call target in a benign execution
path. Finally, the target sets may change when new program parts
are loaded during runtime. However, existing CFI schemes often
assume a static setting and cannot support shared libraries.

To tackle some of these challenges, existing forward CFI schemes
(i) use dynamic or runtime analysis [10, 19, 24], (ii) require kernel-
level modifications [10, 15, 19, 51] or orthogonal defenses such as
shadow stacks to be in place [23, 24], or (iii) rely on architecture-
specific features to recognize valid call targets in real-time [10, 15,
19, 23, 24, 27, 33, 51]. Therefore, these solutions sacrifice generality
and are not agnostic to the underlying OS and hardware. Thus, we
still lack a generic and software-only forward CFI solution that is
neither too permissive nor too restrictive.

In this paper, we propose TyPro, a drop-in replacement for
Clang’s forward CFI scheme. TyPro uses static analysis to propa-
gate function types (1) to gain a compatible CFI scheme for Clang,
and (2) to tackle the open challenges in existing forward CFI sys-
tems. To this end, we extract types and casts from a program’s
Abstract Syntax Tree (AST), and follow how they propagate to
other functions (i.e., contexts). We derive rules from the C standard
that capture all permitted type propagations. We then leverage a
solver that uses the type information and propagation rules to ex-
tract accurate target sets, i.e., functions that are valid for a given call
target. We enforce these target sets by rewriting indirect function
calls with switch/case constructs that can no longer be abused for
function pointers other than those in the target set.

We developed TyPro as an LLVM-based open-source prototype,
available at https://github.com/typro-type-propagation/TyPro-CFI.
TyPro is a software-only solution, fully compatible with dynamic
linking and loading of shared libraries. Our systematic conformity
to the C standard pays off, especially for large real-world programs:
Our protection does not break legacy code and computes target sets
more precisely than industry standards (CFGuard, CET) or IFCC.
Furthermore, TyPro is efficient and does not cause measurable
runtime performance overhead in protected applications.

2 OVERVIEW
2.1 Attacker Model
TyPro aims to defend against function pointer corruptions in C
programs, where an attacker wants to divert control flow to exe-
cute arbitrary code. We consider attackers that know the program’s

memory layout and can read from andwrite to all memory locations
within the boundaries of page permissions. We assume W⊕X, i.e.,
that no pages exist that are both writable and executable. TyPro
protects forward edges (function pointers), so we assume that re-
turn addresses are covered by any other orthogonal scheme [5].
Furthermore, while we consider dynamically-loaded code, we ex-
clude dynamically-generated code such as just-in-time compilation,
and suggest additional protections [36, 44, 55] if necessary.

2.2 Challenges
To build a secure forward CFI, one has to solve the challenge of
finding a precise set of allowed target functions for each indirect
call in C. Not every function that is ever referenced by a function
pointer—we refer to those as address-taken functions—is a valid call
target for any indirect call site. There are two validity conditions to
be checked, whereas existing CFI schemes only consider the first.
(1) The type of the address-taken function “matches” the type of the
function pointer used in the indirect call. For example, an indirect
call that passes just a single argument is clearly incompatible with
functions that expect multiple arguments. Types do not necessarily
have to be identical but should be “compatible”. (2) There is a pro-
gram execution in which the function’s pointer will be passed to the
respective indirect call site. That is, assume the function signatures
of two functions A and B are identical, but B’s pointer is kept local in
a function unrelated to the call. Then, B is never a valid call target.

Related software-only CFI schemes only perform function type
checking and ignore the function’s context. For example, Clang
CFI [47] and MCFI [35] perform a rigid function type checking.
While this strict type checking is intuitive and straightforward, it
is too restrictive and regularly corrupts programs. Indeed, called
functionsmay have different types than the function pointers. In the
code example shown in Figure 1, we see a trivial example where this
happens in lines 8–12: The indirect call in line 12 targets the function
f1 (expecting an argument of type long), which has a different
signature than the function pointer in argument f (expecting an
argument of type int). Consequently, a strict type check will not
allow this function call and will mistakenly terminate the program.

As we will also experimentally show, this strict function type
checking is impractical for many programs. On the other extreme,
we may thus consider forward CFI schemes with less restrictive
type checks. For instance, one could simply count the number of
arguments instead of validating their type, like IFCC [49]. However,
such generous “type matching” allows significantly more valid call
targets than required for correctness, increasing the attack surface.
Regarding our code example, for the indirect call in line 12, IFCC
considers not only f1 as a target, but also any other function with
only one argument present in the codebase. However, in principle,
the indirect call in scene1_b, with callee of type fptr_int can only
target f1. Such over-permissive CFI systems unnecessarily bloat
the attack surface for code-reuse attacks.

2.3 Methodology at a Glance
We aim for a sweet spot between the “too permissive” and “too
restrictive” forward CFI schemes. In particular, our goal is to cor-
rectly track function types even in (typical) situations, such as the
following three: (i) A function pointer is cast to another type. For
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1 typedef void (* fptr_long )(long);
2 typedef void (* fptr_int )(int);
3 typedef void (* fptr_ptr )( fptr_long );
4 void f1(long a) {}
5 void f2(long a) {}
6 void f3(long a) {}
7
8 void scene1_a () {
9 fptr_int f = (fptr_int) &f1;
10 scene1_b(f);
11 }
12 void scene1_b(fptr_int f) { f(0) ; } // call1
13
14 struct S { fptr_long one; fptr_int two; };
15 void scene2_a () {
16 struct S s = { &f2 , 0 };
17 scene2_b (&s);
18 }
19 void scene2_b(struct S *s) { s->one(0) ; } // call2
20
21 fptr_long callback;
22 void set_callback(fptr_long f) { callback = f; }
23 void scene3_a () {
24 fptr_ptr some_cb_target = &set_callback;
25 some_cb_target(&f3) ; // call3
26 }
27 void scene3_b () { callback(0) ; } // call4

Figure 1: Code example showing different ways to transfer
function pointers.

example, regarding Figure 1, the invocation of f (line 12) requires
such tracking, as discussed before. (ii) A function type is hidden in
compound data structures such as struct, union, pointer, or array. In
Figure 1, lines 14–19 provide such an example, where the function
pointer f2 is part of struct S that is passed as pointer to the caller
function scene2_b. And (iii), a function pointer is propagated through
other indirect calls, such as the example in lines 21–27, where the
call target for call4 depends on the arguments and target of the
indirect call3. None of the current strict CFI schemes correctly cover
all these three situations, which causes them to regularly fail many
real-world programs (as demonstrated in Section 6.1).

We propose a static analysis method that propagates types to
tackle the challenge of collecting restricted yet correct sets of call
targets. TyPro operates on source code in the form of an abstract
syntax tree (AST). We track types per function, including casts
between them, and we track which types are exchanged between
functions, even in nested data types. If there is a propagation path
from a function’s type to an indirect call’s type, we know this
function is a valid target.

Our type propagation is roughly split into three phases. First,
we extract “initial” type information from the AST. Consider the
indirect call in lines 8–12 in Section 2.2. Here, our analysis collects
f1’s and fptr_int type declarations, a cast from f1’s type fptr_long
to fptr_int, and also that fptr_int is used as scene1_b argument
type. We store this information as facts—logical formulas that are
assumed to be true before the analysis starts. Facts represent one
of the Horn clause types [18]. This encoding has been employed by
a plethora of analyses for various properties [3, 14] as it allows for
leveraging advanced solvers [9, 22] to compute the actual result.

Second, we use the facts to find a set of valid targets for every
indirect call in the code at link-time. To this end, we first specify a

set of rules—another Horn clause type. They are logical implications
that describe how to derive new information (rule’s body) starting
from the initial facts or the information derived being true by the
previous rules’ applications (rule’s head). In particular, our rules
describe how to compute all possible type propagations permitted
by the C standard. They thus form the basis for computing the final
set of allowed functions (i.e., the target set) for each indirect call.

Third, we supply the facts and the rules to a solver that derives
the target sets while applying the rules mentioned above. This
process continues to the point when rule applications do not derive
any new target for any indirect call. In our example, the solver
concludes that f1’s type is the only type that propagates to call1,
and consequently, f1 is the only valid function in call1’s target set.

Finally, after the type propagation analysis stage, when gener-
ating the program binary, we enforce the resulting target sets. We
assign an ID to each address-taken function and replace the func-
tion’s address with that ID. We transform every indirect call into a
switch over different direct calls that only target functions in the
valid target set. To support dynamic linking and loading, a runtime
library updates the target sets whenever new modules appear at
runtime via just-in-time compilation.

2.4 Type Propagation vs. Data Flow
In contrast to the existing techniques based on data flow [10, 19,
23, 24, 51, 54], our approach does not compute the type evolution
during program execution. Data flow tracking is precise but an ex-
pensive computation, as it requires several non-trivial components
(e.g., control flow). Instead, our type propagation performs light-
weight processing of the information extracted only from the points
in the program’s source code where types are created, manipulated
(e.g., through casts), and used. Although employing data flow-based
approaches may help to obtain even more precise approximations
while computing indirect call targets, our experimental evaluation
(presented in Section 6) demonstrates the effectiveness of our sys-
tem in reducing the target sets for indirect calls. In other words, we
do not see any drastic effects from the approximations we use, while
the absence of flow information helps to make the compilation time
tractable, as discussed in Section 7.

3 TARGET SET COMPUTATION
Our analysis technique starts by extracting facts about the pro-
gram’s code. Then we use the facts in the program-independent
rules computing the type propagation. We use the sample code
shown in Figure 1 to highlight the propagation rules necessary for
our analysis’s correctness. As the result of our analysis, we obtain
the possible target functions set for every indirect call.

3.1 Analysis Input Generation
Our pipeline starts after Clang’s parser produces an AST represen-
tation of the C program, which intuitively constitutes a collection
of expressions [48]. From this tree, we extract only the information
relevant to types, their propagation and usage. We then create the
corresponding Horn clause facts, as introduced in Section 2.3. Our
facts use several boolean relations, as shown in Figure 2. Each re-
lation has a corresponding predicate signature which determines
its domain. For instance, predicate signature N × S × S for relation
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TypeContextPair : N × S × S (available types and their contexts)
TypeCall : N × S × S (types of indirect call parameters)
PointsTo : N × N (pointer to pointee mapping)
StructMember : N × N × N (struct fields with memory offset)
UnionMember : N × N × S (union fields with field type)
Cast : N × N (type propagations)
ICall : N × S × N (indirect calls for callee type)
FunctionPointer : N × S × N × B (address-taken functions)
TargetSet : S × S (possible indirect call targets)

Figure 2: Predicate signatures for the facts used by analysis.

TypeContextPair expresses that facts in this relation take three ar-
guments, the first one is a natural number N (a unique identifier),
the second and the third are strings S (in this case: a type name
and a function’s name). Facts are specific to each program. We
collect the facts for each compilation unit (source file) and merge
on linking. Overall, we split facts into four groups depending on
the information they contain: initial types and context, type con-
structs, functions & calls, and casts & transfers: Initial Types and
Context Collection. Before we can follow a type’s propagation,
we first need to know all types in the program’s code. In addition,
we require a context annotation for each type. The context is a func-
tion or a global variable where C expressions occur. Using pairs
of types and context instead of pure types improves the precision
of the analysis—type propagations can be kept local to a group of
functions. With contexts considered, type propagations from unre-
lated parts of the source code will not influence the computation.
We leverage the AST to extract unique pairs of C types and their
context to get the required information. In particular,
• For every expression 𝑒 with type 𝑡 in function 𝑓 , we collect the
pairs (𝑡, 𝑓 ). For example: (fptr_int, scene1_a).

• For every function declaration 𝑓 with return or parameter types
𝑡0, . . . , 𝑡𝑚 , we collect the pairs (𝑡𝑖 , 𝑓 ), 𝑖 ∈ {0, . . . ,𝑚}. For example:
(fptr_int, scene1_b).

• For every global variable 𝑔 of type 𝑡 , we collect the pair (𝑡, 𝑔). For
example: (fptr_long, callback). If 𝑔 is initialized, we also collect
the pairs (𝑡 ′, 𝑔) for every expression 𝑒 with type 𝑡 ′ inside the
initialization code.
We assign each unique pair an identifier 𝑛 ∈ N. This allows us to

refer to each pair by number, simplifying the rules, saving storage,
and improving computation time as outlined in Section 5. To this
end, we define a function 𝑁 : S × S→ N that returns the identifier
𝑛 for each collected type-context pair. For convenience, we define
its second version 𝑁 : S→ N that returns the identifier 𝑛 for each
AST expression, based on its C type and the corresponding context
object. We store each type/context pair (𝑡, 𝑐) together with their cor-
responding identifier 𝑛 = 𝑁 (𝑡, 𝑐) as fact TypeContextPair(𝑛, 𝑡, 𝑐).

In our example (Figure 1), line 9 corresponds to several AST
expressions encoded as TypeContextPair(0, fptr_long, scene1_a)
as we use function pointer &f1 of type fptr_long in the context of
function scene1_a, and TypeContextPair(1,fptr_int,scene1_a) as
we cast &f1 to type fptr_int, see Figure 5 in Appendix A. Similarly,
line 19 produces the TypeContextPair(8, struct S *, scene2_b) fact,
as we declare parameter of type struct S * for function scene2_b.

Recall that also global variables can be used as a context. For exam-
ple, we define a global variable callback in line 21, which adds the
TypeContextPair(17, fptr_long, callback) fact.
Type Constructs. To correctly track type propagation in com-
plex data structures, we must collect the construction informa-
tion of all derived types in a program. In particular, for every fact
TypeContextPair(𝑛, 𝑡, 𝑐), we do the following depending on 𝑡 :
• If 𝑡 is a pointer or array type (𝑡 := 𝑡 ′∗ or 𝑡 := 𝑡 ′ [. . . ]), we compute
the identifier 𝑛′ = 𝑁 (𝑡 ′, 𝑐), add another fact TypeContextPair(𝑛′,
𝑡 ′, 𝑐), and also store the pointer or array type structure as PointsTo
(𝑛, 𝑛′) fact.

• If 𝑡 is a structure type (𝑡 := struct{𝑡0, . . . , 𝑡𝑚}), we compute
the identifiers 𝑛𝑖 = 𝑇 (𝑡𝑖 , 𝑐) with 𝑖 ∈ {0, . . . ,𝑚} where each
type 𝑡𝑖 corresponds to a struct field. Furthermore, we add fact
TypeContextPair(𝑛𝑖 , 𝑡𝑖 , 𝑐) for each field, and record the type struc-
ture as StructMember(𝑛, 𝑛𝑖 , 𝑥𝑖 ) facts, where 𝑥𝑖 is the byte offset
of field 𝑖 in the struct’s layout.

• If 𝑡 is a union type (𝑡 := union{𝑡0, . . . , 𝑡𝑚}), similar to the struc-
ture type, we add facts TypeContextPair(𝑛𝑖 , 𝑡𝑖 , 𝑐) for each mem-
ber, but record the type structure as UnionMember(𝑛, 𝑛𝑖 , 𝑡𝑖 ) facts.

Figure 6 in Appendix A visualizes the facts that we derive for our ex-
ample code, they represent a type’s construction in a tree-like form.
The type constructs analysis starts with fact TypeContextPair(8,
struct S *, scene2_b)—as obtained during the initial types and
context collection—that implies that struct S* is a pointer type.
Hence, we introduce another fact TypeContextPair(9, struct S,
scene2_b) and store the points-to information as fact PointsTo(8, 9).
Consequently, we check the new fact TypeContextPair(9, struct
S, scene2_b) and as it is a structure type fact (as shown on the line
14) we also add facts TypeContextPair(10, fptr_long, scene2_b) and
TypeContextPair(11, fptr_int, scene2_b), plus the facts capturing
type structure: StructMember(9, 10, 0) and StructMember(9, 11, 8).
Functions & Calls. To determine the target sets for indirect calls,
we need to identify all function pointer types that propagate to
each indirect call. To this end, we need to know all functions taken
as function pointers (address-taken functions) and all types of the
functions that get indirectly called—the start and destination of
our propagation path, respectively. To this end, we collect fact
TypeContextPair(𝑛, 𝑡, 𝑐) plus the additional information from ex-
pression 𝑒 if one of the cases applies:
• Address-taken functions: If 𝑒 represents the address of a func-
tion 𝑓 outside of a direct call, we store the function with its type,
its number of arguments𝑚, andwhether it accepts a variable num-
ber of arguments 𝑣𝑎𝑟𝑎𝑟𝑔 in FunctionPointer(𝑛, 𝑓 ,𝑚, 𝑣𝑎𝑟𝑎𝑟𝑔) fact.
In our example, we produce facts FunctionPointer(0,f1,1,false)
for &f1 in line 9, and FunctionPointer(13, set_callback, 1, false)
for the AST expression “&set_callback” in line 24.

• Indirect calls: For indirect calls, i.e., 𝑒 := 𝑒′ (𝑎1, . . . , 𝑎𝑚), we
record the callee’s expression identifier, a reference to the call ex-
pression, and the number of arguments in fact ICall(𝑁 (𝑒′), 𝑒,𝑚).
In our example, line 12 produces fact ICall(10, call2, 1), and line
25 creates fact ICall(14, call3, 1).

Casts & Transfers. After having collected types, start and des-
tination of type propagation paths, we need to know the actual
propagation steps: We look for the specific AST expressions that
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transfer the type or context. This information populates Cast facts.
In other words, we do not differentiate between type casts or con-
text transfers in our analysis because it operates on type/context
pairs. In particular, for an AST expression 𝑒 , for which we also
collect the fact TypeContextPair(𝑛, 𝑡, 𝑐), we check for these cases:
• Type casts: For a cast 𝑒 := (𝑡) 𝑒′ and sub-expression 𝑒′ with
TypeContextPair(𝑛′, 𝑡 ′, 𝑐), we produce a fact representing a cast
from 𝑡 ′ to 𝑡 : Cast(𝑛′, 𝑛). This kind of fact covers all casts that
C supports, including implicit casts and qualifier casts. In our
example, we have a cast in line 9, casting an expression of type
fptr_long to fptr_int in the context of function scene1_a. Using
the corresponding type/context identifiers (obtained during the
initial type and context collection) that the analysis stores in the
TypeContextPair facts, we record this as Cast(0, 1), see Figure 5.

• Global variable uses: If expression 𝑒 := 𝑔 accesses a global
variable 𝑔, having a corresponding TypeContextPair(𝑛′, 𝑡, 𝑔) fact,
we record this as an implicit cast: Cast(𝑛′, 𝑛). Intuitively, this cast
allows us to derive the propagation of type 𝑡 from the global’s
context to the context of expression 𝑒 . If this access could be a
write, we need to account not only for context transfer from the
global context but to the global context itself. In other words, type
𝑡 should become accessible at the global context. We capture this
bidirectional context transfer by adding factCast(𝑛, 𝑛′). Note that
the type of the global variable 𝑡 equals the type of the expression
accessing it, only the context changes.
In our example, there is a global variable callback, written in func-
tion set_callback and accessed in function scene3_b, see Figure 7
in Appendix A. For the write access, we record facts Cast(17, 18)
and Cast(18, 17). For the read access, we record Cast(17, 19).

• Direct calls: Similar to global variables, direct calls also manipu-
late the context. In a call 𝑒 := 𝑓 ′ (𝑎1, . . . , 𝑎𝑚) to a function with
declaration 𝑓 ′ (𝑝1, . . . , 𝑝𝑚), we produce for every argument 𝑎𝑖 a
separate cast fact: Cast (𝑁 (𝑎𝑖 ) , 𝑁 (𝑝𝑖 , 𝑓 ′)). For the return value
of type 𝑟𝑡 , we also produce a cast fact: Cast(𝑁 (𝑟𝑡, 𝑓 ′), 𝑛). In our
example, scene1_b is called in line 10, with an argument repre-
sented as TypeContextPair(1,fptr_int,scene1_a). We capture this
by recording Cast(1, 2), see Figure 5. Similarly, for the call from
scene2_a to scene2_b in line 17, we record Cast(7, 8).

• Indirect calls: For indirect calls 𝑒 := 𝑒′ (𝑎1, . . . , 𝑎𝑚), the type of 𝑒′
is a function pointer 𝑡𝑒′ = 𝑟𝑡 (∗)(𝑝1, . . . , 𝑝𝑚) with parameter types
𝑝𝑖 and return type 𝑟𝑡 . We want to store the casts as we do for a di-
rect call. To this end, we use a new relation TypeCall, which uses
indexing similar to TypeContextPair, but records a reference to in-
direct call 𝑒 (also discussed in Functions and Calls) instead of a con-
text. We add the facts TypeCall(𝑛𝑖 , 𝑝𝑖 , 𝑒) and TypeCall(𝑛𝑟𝑡 , 𝑟𝑡, 𝑒),
also we define 𝑛𝑖 = 𝑁 (𝑝𝑖 , 𝑒) and 𝑛𝑟𝑡 = 𝑁 (𝑟𝑡, 𝑒) for 𝑖 ∈ {1, . . . ,𝑚}
accordingly. With these new facts, we can then add the casts
similar to a direct call: Cast (𝑁 (𝑎𝑖 ) , 𝑛𝑖 ) and Cast(𝑛𝑟𝑡 , 𝑛).
Note that a TypeCall fact does not contain the context information
in which the type of the argument (in the indirect call) is defined.
Ultimately, this approximation allows our analysis to extract all
possible contexts for each of the types used in an indirect call,
which is crucial for the correctness of the target set computation
that we discuss in Section 3.2. In our example, we have indirect
call call3 in line 25. In addition to indirect call fact ICall discussed
earlier, in this case, we produce a cast fact for its first argument

Cast(15, 16) and a TypeCall(16,fptr_long,call3) fact (see Figure 7,
Appendix A). In Section 3.2 we show how these facts are used to
relate this indirect call parameter type to the type of its argument
FunctionPointer(15,f3,1,false).

3.2 Type Analysis
Having obtained facts from the AST, we now describe how we use
these facts for type propagation reasoning. Our type analysis is
based on a collection of rules. We define these generic rules as con-
strained Horn clauses [18] once, i.e., they are program-independent.
The rules thus specify the logic behind our analysis type reasoning.
They follow type propagations across functions, through nested
compound types and indirect calls. Finally, they specify how to
obtain from these type propagations a set of possible targets for
each indirect call as a result of TargetSet relation computation: For
every function 𝑓 , which is a valid target for indirect call 𝑐 , the rules
show how to derive TargetSet(𝑐, 𝑓 ).

Figure 3 depicts the rules we use to compute TargetSet relation
containing the final result, i.e., targets for each indirect call. We
obtain this result when the analysis cannot extend TargetSet re-
lation via rule application; in other words, no more information
can enter the relation. Note that all variables used in the rules have
the types corresponding to the predicate signature presented in
Figure 2. Moreover, these variables are universally quantified—each
rule can be used multiple times for each variable assignment that
makes it applicable. Ultimately, TargetSet contains a mapping from
indirect calls to their possible targets.

The first group of rules, which consists of the rules (T), (P), (S),
and (U), allows our analysis to extend the Cast relation. Computa-
tion of this relation allows our analysis to account for transitivity
of multiple propagations (rule (T)), pointer aliasing (rule (P)), and
structures & unions (rules (S) and (U)). Intuitively, the Cast relation
captures all possible propagation paths of the types and contexts.

The second group of rules—(F1) for fixed and (F2) for variable
number of arguments—use the Cast relation to compute our final
result, the TargetSet relation. In particular, we access the computed
propagation paths between function pointers and indirect calls.

However, with the first two groups of rules, we can compute only
a partial result for the TargetSet relation. The last group of rules
(IC1, IC2) uses this partial result to enrich TargetSet, accounting
for context casts from the arguments of an indirect call to its actual
target, as it happens in call3.

In the rest of this subsection, we detail the reasoning behind the
rules in each group.
Type/Context Manipulations. Rule (T) computes the relation
Cast, e.g., type and context propagation paths over multiple casts.
In our example code, this happens in lines 8–12 (see Figure 5 in
Appendix A) for which we already extracted the facts Cast(0, 1)
and Cast(1, 2). Using these facts, rule (T) derives the fact Cast(0, 2)
(grey arrow in the figure), revealing the relation between call1 and
f1. Later, we will use this new fact to derive one of the target set
results, namely TargetSet(call1, f1).

Rule (P) handles pointer casts and pointer aliasing. Whenever
a pointer is cast to another pointer type, the two pointers alias,
they point to the same value in memory. For us, this implicates that
something can be referenced by two potentially distinct pointee
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Cast(𝑡1, 𝑡2) ∧ Cast(𝑡2, 𝑡3) =⇒ Cast(𝑡1, 𝑡3) (T)
Cast(𝑡1, 𝑡2) ∧ PointsTo(𝑡1, 𝑡 ′1) ∧ PointsTo(𝑡2, 𝑡 ′2) =⇒ Cast(𝑡 ′1, 𝑡 ′2) ∧ Cast(𝑡 ′2, 𝑡 ′1) (P)

Cast(𝑡1, 𝑡2) ∧ StructMember(𝑡1, 𝑡 ′1, 𝑥) ∧ StructMember(𝑡2, 𝑡 ′2, 𝑥) =⇒ Cast(𝑡 ′1, 𝑡 ′2) (S)
Cast(𝑡1, 𝑡2) ∧ UnionMember(𝑡1, 𝑡 ′1, 𝑥) ∧ UnionMember(𝑡2, 𝑡 ′2, 𝑥) =⇒ Cast(𝑡 ′1, 𝑡 ′2) (U)

ICall( 𝑡1, 𝑐𝑎𝑙𝑙 , 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 ) ∧ FunctionPointer( 𝑡2, 𝑓 ,

fixed args︷        ︸︸        ︷
𝑎𝑟𝑔𝑠𝑓 , false) ∧

param count
matches︷                ︸︸                ︷

𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 = 𝑎𝑟𝑔𝑠𝑓 ∧( 𝑡2 = 𝑡1 ∨ Cast( 𝑡2 , 𝑡1 )︸                           ︷︷                           ︸
𝑡2 = 𝑡1 or

𝑡2 propagates to 𝑡1

) =⇒ TargetSet( 𝑐𝑎𝑙𝑙 , 𝑓 ) (F1)

ICall( 𝑡1, 𝑐𝑎𝑙𝑙 , 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 ) ∧ FunctionPointer( 𝑡2, 𝑓 , 𝑎𝑟𝑔𝑠𝑓 , true︸       ︷︷       ︸
𝑓 is vararg

) ∧ 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 ≥ 𝑎𝑟𝑔𝑠𝑓︸                 ︷︷                 ︸
enough params
for req. args

∧(
︷                           ︸︸                           ︷
𝑡2 = 𝑡1 ∨ Cast( 𝑡2 , 𝑡1 )) =⇒ TargetSet( 𝑐𝑎𝑙𝑙 , 𝑓 )

(F2)

TargetSet( 𝑐𝑎𝑙𝑙, 𝑓 ) ∧ TypeCall( 𝑡2 , 𝑡𝑦𝑝𝑒 , 𝑐𝑎𝑙𝑙 ) ∧ TypeContextPair( 𝑡3 , 𝑡𝑦𝑝𝑒 , 𝑓 ) ∧ Cast( 𝑡1 , 𝑡2 ) =⇒ Cast( 𝑡1 , 𝑡3 ) (IC1)

TargetSet( 𝑐𝑎𝑙𝑙, 𝑓 ) ∧ TypeCall( 𝑡2 , 𝑡𝑦𝑝𝑒 , 𝑐𝑎𝑙𝑙 ) ∧ TypeContextPair( 𝑡1 , 𝑡𝑦𝑝𝑒 , 𝑓 ) ∧ Cast( 𝑡2 , 𝑡3 ) =⇒ Cast( 𝑡1 , 𝑡3 ) (IC2)

Indirect 𝑐𝑎𝑙𝑙 to a function of type 𝑡1 Address-taken function 𝑓 of type 𝑡2

Indirect 𝑐𝑎𝑙𝑙 targets 𝑓 𝑡𝑦𝑝𝑒 declared in context of 𝑐𝑎𝑙𝑙 or 𝑓 Any 𝑡1 (𝑡3) propagating to (from) 𝑡2

Figure 3: Rules for computing the final result with all possible function types for each call.

types, so an implicit type or context propagation can happen. This
propagation is possible in both directions, depending on which
pointer is accessed afterward. In our example, this happens in lines
14–19; see Figure 6 in Appendix A. From this code, we extracted
two PointsTo facts, one for the type struct S * in scene2_a, and one
in scene2_b, plus a fact for context propagation Cast(7, 8) between
these two. Then we use rule (P) to derive Cast(3, 9) and Cast(9, 3).

Rules (S) and (U) handle struct and union types. When one struct
is transferred into another, this implicitly transfers all its fields. By
referencing the fields by their memory offset, we map fields to each
other and collect newly-introduced Cast facts. We handle unions
similarly. However, values from a union can only be read as the
same type as they were written. We use the field type instead of the
field byte offset for unions. In our example, this happens in lines
14–19; see Figure 6, Appendix A. Having derived Cast(3, 9) with
rule (P) before, now we derive Cast(4, 10) (and Cast(5, 11)) using
rule (S). These new casts connect the function pointer “&f2” from
line 16 with call2, as the result of computation of Cast relation.
Target Set Computation. Using the possible type propagation
paths obtained from the Cast relation, the rules (F1) and (F2) com-
pute the actual target set TargetSet. If a function pointer propagates
to the callee argument of an indirect call, rules (F1) and (F2) add
this function as a possible target. In addition, these rules check that
the number of parameters is valid. Rule (F1) handles functions with
a fixed number of parameters, which must match the number of
arguments in the indirect call. Instead, while otherwise similar, rule
(F2) handles functions with a variable number of parameters.

In our example, using the previously established facts and parts
of derived Cast relation computation result, rule (F1) derives target
sets for indirect calls call1, call2, and call3: using Cast(0, 2) –
TargetSet(call1, f1), using Cast(6, 10) – TargetSet(call2, f2), and
using Cast(13, 14) – TargetSet(call3, set_callback).
Indirect Call Context Transfer. Function calls propagate types
by changing their contexts: the argument types propagate from

caller to callee context, and the return type propagates from callee
to caller context. Section 3.1 shows how to collect these propaga-
tions as Cast facts for direct calls, but for indirect calls, we only
collected Cast facts from argument types to a TypeCall(𝑛, 𝑡𝑎, 𝑐𝑎𝑙𝑙)
fact. Now that we have partial possible targets in TargetSet from
the previous rules’ application, we complete type propagation com-
putation for indirect calls: We derive a type context propagation for
every argument type from caller context to every possible target
function’s context and vice versa for return types.

Rules (IC1) and (IC2) calculate these context transfers from in-
direct call arguments to indirect call target parameters. This com-
putation is based on a partial TargetSet result, and assumes that
an indirect call actually calls all functions in its target set, which
might be over-approximating. Rule (IC1) computes context trans-
fers for indirect call arguments, while (IC2) does the same for return
types. These rules derive each Cast as if an indirect call would be
a direct call to each function from its target set. When generating
facts for an indirect call 𝑒 , we added Cast(𝑁 (𝑡, 𝑐), 𝑁 (𝑡, 𝑒)) for each
argument, where 𝑁 (𝑡, 𝑒) is also used in a TypeCall fact. From this
fact, rule (IC1) derives Cast (𝑁 (𝑡, 𝑐) , 𝑁 (𝑡, 𝑓 )) for any function 𝑓

the indirect call 𝑐 can target, which is exactly what we would get
for a direct call to 𝑓 . Rule (IC2) does the same for return types.

These rules are necessary to handle higher-order functions (indi-
rect calls with function pointer arguments), like call4 in line 27, see
Figure 7 in Appendix A. As previously discussed, facts and derived
Cast information allow us to obtain TargetSet(call3, set_callback)
with rule (F1), yet we cannot derive a target set for call4 yet. Still,
we establish the fact Cast(15, 16) about the call argument of call3.
Now applying (IC1) with these two facts, we get Cast(15, 18), con-
necting the call argument f3 with the actual target set_callback.
From Cast(15, 18), we use the other rules again (namely rule (T) for
Cast and rule (F1)) to derive Cast(15, 17), Cast(15, 19), and a target
set for call4: TargetSet(call4, f3). The final shape of the TargetSet
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relation is as follows: call1 has f1, call2 has f2, call4 has f3, and
call3 has set_callback as their targets, respectively.
Multi-module Support. So far, we have focused on generating
facts for and applying rules to a single module. To combine sev-
eral modules when linking, we alpha-rename type/context pair
identifiers in TypeContextPair and propagate these changes across
all the other facts describing the module. Renaming preserves the
identifier uniqueness required for the correct rules evaluation.
Dynamic Linking. We generate a module summary to support
dynamic linking and loading of code. It contains all facts from
a program that might influence other modules. These facts are
loaded with the code at runtime, combined, and the target sets are
re-computed. Appendix B describes this process in more detail.

4 CALL TARGET ENFORCEMENT
After having computed the target sets of all indirect calls, we enforce
the CFI policy at link time within a binary: indirect calls must
transfer control only to the reduced set of targets.

To enforce that only functions from the computed targets in
TargetSet can be called, we replace function pointers with function
identifiers in the whole program. A function identifier is a unique
number for each address-taken function. It has the same bit size
as a pointer so that it can replace the function pointer in memory.
This way, we must only alter its initialization and usage. We replace
each use of an address-taken function that is not a direct call with
this identifier. Next, we replace all indirect calls with a switch-case

structure over the function identifiers. For each possible function
in the target set, we generate a case matching the function ID and
a direct call to the respective function in the body. In the default
case, i.e., when the ID does not match any allowed function ID, we
terminate the program to stop a detected attack.

To stay correct and precise, we must only allow functions that
are actually valid call targets according to the C specification. First,
the number of arguments must match, which is enforced by the
argument number checks in rule (F1)—rule (F2) similarly handles
functions with a variable number of arguments. Second, it must
be possible to cast all arguments to the required type in the target
function; otherwise, the call would be undefined behavior. Type-
casts are usually possible if both types are an integer, pointer, or
float, or have the same bit width. Last, if the call’s return value
is not discarded, it must be possible to cast the function’s return
value to the return value of the call expression. We check all these
conditions before generating cases and confirm their validity ex-
perimentally in Section 6.1. Still, functions with incompatible types
might occur due to overapproximation in our analysis.

Generating assembly code from switch-case statements is left
to LLVM, which lowers them into different assembly constructs,
from simple comparisons over binary trees to jumptables. Also,
LLVM can run additional optimizations over the new statements,
that might not be possible before our changes, e.g., direct calls can
be inlined if the callee is only short or rarely used.

To improve performance, TyPro tries to assign ascending identi-
fiers to functions that occur together in the same target set. Ascend-
ing numbers lead to dense identifier sets, which can be converted to
efficient jumptables, facilitating the subsequent LLVM optimization

passes. Furthermore, TyPro reserves the lower numbers (up to 3)
for program-specific non-function constants (like SIG_IGN in libc).

For dynamic modules, as detailed in Appendix B.3, a linked
library generates function IDs and new switches at runtime, based
on the updated analysis results.

5 IMPLEMENTATION
Webuild theTyPro prototype as an extension of the Clang/LLVM10
compiler toolchain. It targets 64-bit x86, ARM, andMIPS, generating
binaries without additional dependencies on hardware features or
operating system. TyPro can produce fully protected binaries with
a protected musl libc [34], or protected binaries linking against an
unprotected GNU libc (see Appendix C for details).

In our prototype, we instrument the code generation of Clang
to collect facts (as discussed in Section 3.1 and Appendix B.1) along
with the compilation of the program. The collected facts are stored
together with the original LLVM IR code in an object file.

After applying several optimization steps outlined inAppendixD,
we extract the facts from all IR files seen in our modified version
of LLVM’s linker lld. Finally, we encode the optimized set of facts
and the rules (from Section 3.2 and Appendix B.2) in datalog for
the Soufflé Logic Solver [22, 42] which we leverage to compute the
TargetSet relation containing the targets for each indirect call.

We implemented a runtime library that enforces dynamically-
loaded targets as a stand-alone C++ library without dependencies
on LLVM or other non-standard libraries. It loads the serialized facts
from multiple modules, runs the target set computation, and gener-
ates switches with a built-in just-in-time compiler. We perform all
operations lazily, i.e., only after the first indirect cross-module call,
preventing unnecessary computation. The library is 1.3 MB large
and can either be shared or included in a protected musl libc.

6 EVALUATION
We evaluate TyPro using three criteria. In Section 6.1, we measure
correctness. Programs must not break, i.e., target sets must always
include (at least) the correct targets. In Section 6.2, we evaluate
security. Security is largely determined by the extent to which the at-
tack surface is reduced, i.e., how many overall targets remain in the
target set. Finally, in Section 6.3, we measure TyPro’s performance
in terms of runtime slowdown and size overhead.
Evaluation datasets. We evaluate each criterion on two datasets.
First, we use the well-known SPEC CPU 2006 benchmark suite [45].
In particular, we consider all nine SPEC programs written in pure
C and use indirect calls, namely, bzip2, gcc, gobmk, h264ref, hmmer,
milc, perlbench, sjeng, and sphinx3. These SPEC programs are also
used inmost related work [10, 15, 16, 19, 23–25, 27, 35, 37, 49, 51, 57],
which allows for an easy comparison with TyPro.

Our second dataset consists of 7 larger real-world programs,
commonly used in relatedwork [15, 16, 19, 23–25, 27, 51]. It includes
the web serversApache, lighttpd and nginx, the FTP servers pureftpd
and vsftpd, a cache servermemcached, and the database redis. These
programs use libraries like libpcre, zlib, libevent, lua and more.
Compilation setup. We compile all programs and libraries with
TyPro enabled, using -O3 and link-time optimization. We preferred
static linking, so, when compared, no disadvantage for related work
without dynamic linking support (like Clang CFI) was introduced.
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For comparison, we compile all programs using the same opti-
mization settings with an unmodified Clang 10 compiler, default
libraries, and Clang CFI [47] in normal (-fsanitize=cfi-icall) and
generalized mode (-fsanitize-cfi-icall-generalize-pointers).
We also compared TyPro’s policy to IFCC [49] and CFGuard [28].

6.1 Correctness
A CFI scheme must not break existing code to foster adoption in
practice. While manual code changes could resolve incompatibili-
ties, this is not feasible in many cases.
SPEC. We run the SPEC CPU benchmarks with all input sets and
verify the output. TyPro handles all nine programs without any
failure, as shown in Table 1. In contrast, Clang CFI causes crashes
in gcc and hmmer computing too narrow target sets, which we
verified manually. These two benchmarks failed even in Clang
CFI’s generalized mode with relaxed type checking. These failures
were observed only post-mortem as crashes, and it might be hardly
feasible to alter the source of such big projects as gcc to respect the
typing judgments. From the related work [25], we also know that
MCFI [35] crashes on perlbench and gcc, while IFCC [49] passes all
benches. The lack of dynamic linking does not impact related work
here, as SPEC does not use it.
Real-world. TyPro successfully compiled all seven programs
without introducing errors, as shown in Table 2 (i.e., no false nega-
tives). Also, IFCC [49] passed all tests but with much larger target
sets, which we address in Section 6.2. But Clang CFI failed on
four programs (lighttpd, nginx, pureftpd, and redis). Its generalized
mode resolved the errors in nginx, but not the remaining three. We
checked all introduced problems by hand—dynamic linking caused
none, and all were due to functions that do not precisely match call
types. Clearly, Clang CFI is too restrictive; and any extension to
support vararg would break Clang CFI’s equivalence class model.
Unit Tests. To further testTyPro, we created a set of over 220 hand-
crafted unit tests, checking the correctness of TyPro’s support for
different aspects of the C language, triggering corner cases, and
checking correct interaction with libc. We verified using QEMU that
these tests also succeed on ARM and MIPS. With these tests and
the various applications, we are confident that TyPro can handle
any standard-conformant C program (within limits from Section 7).

6.2 Security
As detailed in Section 4, TyPro takes all indirect calls in a C program
and converts them to a set of well-typed direct calls. Therefore, no
indirect call instructions remain in the compiled program, mak-
ing arbitrary jumps impossible. However, attackers with memory
corruption capabilities can tamper with the function identifiers
that replaced function pointers in memory. Even in this case, they
cannot invoke arbitrary code—only the execution of a minimal
and limited set of functions is possible. Furthermore, the gener-
ated code is inherently safe against concurrent modifications and
potential time-of-check/time-of-use (TOCTOU) vulnerabilities for
two reasons: First, during computation, no intermediate values are
spilled onto the stack. The branching happens in registers that
are inaccessible to attackers. Second, even if manipulation would
be possible, there is no arbitrary call that an attacker could try
to reach, only direct calls for each function in the target set. The

only indirect jumps in the program come from the compiler it-
self, as introduced for jumptables. However, the compiler properly
bound-checks these jumps, making them irrelevant for control flow
security. Thus, our switch-based target enforcement indeed limits
the surface for code-reuse attacks.

The same arguments hold for the target checks between dynamic
modules. Both statically-compiled and JIT-compiled switch state-
ments are safe on their own. They are connected by a pointer in
read-only memory, which attackers cannot tamper with. Only when
new switches are built during load time the pointer is temporarily
made writeable. However, dynamic modules are often loaded at
startup before any input is processed to minimize the risk further.

Finally, we aim to understand the security benefits of finding
minimal call target sets. Smaller target sets leave the attacker with
fewer choices and fewer gadgets. As suggested in related litera-
ture [7, 25], we report absolute numbers of possible targets for
indirect calls. We rely on CSCAN [25]’s metric of computing the av-
erage number of targets per indirect call, considering only indirect
calls that are reached during the execution of the program. Because
CSCAN’s approach is incompatible with our function identifier and
direct call approach, and because CSCAN showed problems with
different compiler optimizations, we implemented an equivalent
computation for this metric, collecting target sets at compile-time
and indirect calls at runtime. We evaluate TyPro and compare it
to Clang CFI [47] in both normal and generalized mode, IFCC [49]
and CFGuard’s [28] policy, all with the same compiler version and
optimization settings. We do not compare to Intel CET’s indirect
branch tracking [38], whose precision is likely worse than CFGuard.
Because Clang CFI and IFCC do not support musl libc, we link all
programs against an unprotected GNU libc for this comparison, in
line with related work. Results with musl libc are similar.
SPEC. Table 1 reports the average number of targets for SPEC
programs. Clang CFI builds the smallest target sets but breaks
programs. In contrast, TyPro has slightly more targets (0.6% on
geometric mean) but keeps all programs intact without modifica-
tions. Moreover, TyPro builds smaller target sets than Clang CFI’s
generalized mode, which still breaks programs at a worse precision.
IFCC and CFGuard do not break anything but build larger target
sets than TyPro, on average 2.5× / 4.8× the size. We also compare
our results to MCFI [35], analyzed by CSCAN [25]. TyPro has a
slightly better precision than MCFI, and its policy works even on
unmodified programs. Note that CSCAN used a different compiler
version and likely different, unknown optimization settings for their
results. Furthermore, it is unclear if it uses patches to SPEC. For
transparency, we also show CSCAN’s results for Clang CFI, which
vary from us by 1.8%. If linked with musl libc, the programs use
1–15 additional indirect calls from musl, with 2–17 average targets.
On average, over all programs, calls inside musl have 7 targets.
Real-world. Table 2 reports the average number of targets on
several real-world programs frequently used in related literature.
Again, Clang CFI builds the smallest but often incorrect target sets.
Clang’s generalized mode builds 91% larger but still too narrow
target sets. TyPro has more allowed targets on these larger pro-
grams than Clang (+102%, +6% more than generalized mode), but
the target sets do not cause crashes. Compared to other correct
solutions like IFCC or CFGuard, the number of possible targets has
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Table 1: Average number of call targets per indirect call on SPEC. TyPro compared to Clang CFI, IFCC, CFGuard and MCFI. ✗:
benchmark fails (CFI too restrictive). ◦: best security per benchmark. •: best security among compatibility-preserving schemes.

Clang CFI [47] Clang CFI
(generalized) TyPro IFCC [49] CFGuard [28] Clang CFI

(data from [25])
MCFI [35]

(data from [25])
400.perlbench 17.71 ◦ 51.99 22.32• 180.79 821.00 22.03 23.27 ✗

401.bzip2 1.00 ◦ 1.00 ◦ 1.00• 1.00• 2.00 1.00 ◦ 1.00 ◦
403.gcc 9.19 ✗ 34.44 ✗ 24.98• 365.12 1192.00 8.91 ✗ 32.63 ✗

433.milc 2.00 ◦ 2.00 ◦ 2.00• 2.00• 2.00• 2.00 ◦ 2.00 ◦
445.gobmk 631.50 631.50 631.50• 749.12 1786.00 600.84 ◦ 605.51
456.hmmer 9.00 ✗ 18.00 ✗ 2.78• 19.00 19.00 10.00 10.00
458.sjeng 7.00 ◦ 7.00 ◦ 7.00• 7.00• 7.00• 7.00 ◦ 7.00 ◦
464.h264ref 2.24 2.34 2.24• 10.95 42.00 2.06 ◦ 2.06 ◦
482.sphinx3 5.00 ◦ 5.00 ◦ 5.00• 5.00• 5.00• 5.00 ◦ 5.00 ◦
avg. % (base) +41.7% +0.6% +157.5% +379.8% +1.8% +18.4%

Table 2: Average number of call targets per indirect call on
various real-world programs.

Clang CFI Clang CFI
(gen.) TyPro IFCC CFGuard

httpd 14.69 ◦ 41.78 36.19• 462.59 2267.00
lighttpd 5.99 ✗ 10.93 ✗ 11.26• 50.32 257.00
memcached 1.99 ◦ 2.36 2.01• 14.88 85.00
nginx 16.53 ✗ 56.08 ◦ 102.28• 240.72 758.00
pureftpd 1.00 ✗ 1.00 ✗ 1.00• 3.00 15.00
redis 10.03 ✗ 44.19 ✗ 48.06• 247.50 1136.00
vsftpd 3.33 ◦ 3.33 ◦ 3.33• 6.00 35.00
avg. % (base) +90.8% +102.3% +772.3% +4102.6%

greatly reduced—TyPro has less than one-quarter of IFCC’s targets
and 4.8% of CFGuard’s targets while still keeping programs intact.

Having said this, TyPro’s target set computation is still an ap-
proximation working exclusively on the extracted type information.
The algorithm can overapproximate the possible targets to prefer
correctness and speed over precision but never under-approximates
targets. In specific cases, sophisticated attacks on really large pro-
grams like Control Jujutsu [12] or Control-Flow Bending [7] might
still be possible, even in the presence of a perfect CFI policy. But
from the experiments, we conclude that TyPro hits a sweet spot
between correctness and security.

6.3 Performance
To facilitate wide deployment, we now demonstrate that TyPro
does not impose significant overheads on protected programs.
Performance Overhead. We used the SPEC CPU 2006 benchmark
and our real-world servers to evaluate the performance impact. We
measured the server’s performance with ab [46], memaslap [58],
redis-benchmark [40] and ftpbench [41]. Experiments ran on an
Intel Core i5-4690, 32 GB RAM, and Debian 10. For ARM, we used
an Apple M1, 16 GB Ram, and asahi Linux with kernel 5.17. We used
the “performance” CPU governor, disabled CPU boost, and applied
cpuset tominimize the impact of environment and operating system
on the measurements. We repeated experiments at least 10×. The
standard deviation on SPEC was at most 0.76%, and 0.2% on average.
Unfortunately, we had to exclude two inconsistent benchmarks
(FTP servers on ARM): averaged results varied between ±0.5% with

bzip2 gcc gobmk h264ref hmmer milc perlbench sjeng sphinx3
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Figure 4: Runtime overhead of TyPro. Average overhead on
SPEC 2006 benchmarks is −0.3%.
(*) Unreliable FTP benchmarks were excluded on ARM.

a standard derivation of up to 3%. Lacking hardware, we did not
evaluate performance on MIPS.

We present our findings in Figure 4. Protected programs get
between 1.6% slower and 2.9% faster. The mean overhead is −0.3%
on SPEC, i.e., programs get slightly faster, and zero on real-world
applications. TyPro has a higher overhead in programs with large
target sets (like gobmk with >600 valid targets, or nginx) and shows
negative overhead in programs with small target sets (like bzip and
h264ref ). For many programs, the measured changes are within the
standard deviation, and no real overhead is measurable.
SpaceOverhead. When comparing program size, we observed that
the compiled binaries sometimes get larger. The generated switches
and direct calls need more instructions than a single indirect call.
Most programs are a few kilobytes larger after protection. In the
worst case, gobmk gets 1.4 MB larger (40%). Figure 10 in Appendix F
shows details. On average, programs get 9.1% larger. We expect that
this space demand does not prevent a CFI scheme from broader
adoption, except for example embedded systems.
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7 LIMITATIONS & DISCUSSION
Our TyPro prototype has some limitations. First, the target set com-
putation slows down compilation. Our non-parallelized prototype
analyzes small programs in a few seconds, medium programs in a
few minutes, and complex programs like nginx in less than an hour.
While we believe that this build time is not a deal-breaker in times
when software is built by CI servers, our prototype can still be
improved for speed. Likewise, dynamic loading and re-computing
target sets at runtime can take up to a few seconds. Assuming that
the loaded modules do not change frequently, TyPro could cache
the computed target sets to speed up this process massively.

Second, like other CFI systems, our approach has limited compat-
ibility with unprotected libraries. If function pointers are exchanged
with other libraries, these libraries have to be also protected. Usually,
one could recompile these libraries, but this might be impossible in
some cases. In fact, TyPro already has semi-automated support for
function pointers exchanged with unprotected libraries. But devel-
opers would have to mark functions imported from unprotected
modules so that the compiler can instrument calls accordingly.

Third, TyPro does not yet support inline assembly or C++, which
is sometimes combined with C code. We believe relevant use of
inline assembly is rare, apart from standard libraries. Most inline
assembly occurrences do not need analysis, e.g., the assembly in
musl libc. While some parts of C++ are already supported (like
lambda functions), we would need extensions for full support: First,
we would have to collect class layout and inheritance information
during type and context collection. Second, we would need addi-
tional rules for type propagation over inheritance. Third, we would
compute target sets for C++ virtual dispatch. Fourth, we would
rewrite virtual dispatch similar to NoVT [2].

8 RELATEDWORK
TyPro positions itself in a wide range of existing CFI systems.
We have demonstrated that TyPro stands out as the most precise
software-only forward CFI system that retains compatibility even
with large programs. TyPro can protect any C software that LLVM
can compile without requiring code modifications or special hard-
ware. Furthermore, we believe the proposed type propagation is
novel at the conceptual level. Now we will survey related work and
briefly mention how TyPro differs from these proposals.
Software-Only Forward CFI. So far, Clang is the only com-
piler with a strong forward CFI solution built-in. Clang CFI [47]
checks the target’s type before indirect calls, preventing jumps
to type-mismatched functions. MCFI [35] is a similar protection
with support for dynamic loading and linking. 𝜋CFI [37] extends
MCFI with runtime information; functions are not allowed to be tar-
geted before they are referenced once at runtime. IFCC [49] checks
not function types but argument numbers, providing compatibility
with legacy programs at the price of much larger target sets. We
have demonstrated that these schemes are either too restrictive and
break programs or are too permissive. Finally, Microsoft Control
Flow Guard [28] is even weaker: an indirect call can target the start
of any function. These systems are context-insensitive, i.e., they
consider only the indirect call and function pointer at runtime, like
TyPro.

Hardware-Assisted CFI. To accelerate CFI, researchers recently
proposed hardware-assisted CFI schemes. In particular, Intel PT [20]
was used in PT-CFI [16], PITTYPAT [10], CFIMON [54], µCFI [19],
PathArmor [51] and GRIFFIN [15]. Furthermore, researchers pro-
posed TSX-based CFI [33] and CFI-LB [23] based on Intel’s transac-
tional memory extensions, while OS-CFI [24] combines Intel MPX
and TSX. CCFI [27] uses AES-NI instructions to perform crypto-
graphic CFI checks. In contrast to TyPro, these systems require
special hardware and potentially changes to the OS kernel, hin-
dering the deployment of protected applications in many settings.
Some of these systems are context-sensitive, i.e., they consider ad-
ditional runtime information to determine correct call targets at
the cost of increasing complexity and performance penalties.
Binary-Only CFI. The protection of pre-compiled executables re-
solves the dependency from the source code. In particular, Opaque
CFI [32], CCFIR [56], binCFI [57], Lockdown [39], TypeArmor [52]
and CFIMon [54] can enforce a CFI scheme without source code. In
contrast to source-based schemes, these CFI solutions lack precise
typing and flow information. They rely on approximative recon-
structions, making them less precise than source-based approaches.
CFI for JITed Code. There are special-purpose CFI schemes tar-
geting dynamically generated code. RockJIT [36], JITScope [55]
and DCG [44] protect the execution of JIT-compiled code against
control flow attacks. These schemes nicely extend TyPro because
our current prototype only covers C code at compile time.
Backwards CFI. There is a whole range of schemes for back-
ward CFI, which are out of scope for TyPro, for example stack
canaries [11] and shadow stacks [8, 53]. Shadow stacks will gain
hardware support soon as part of Intel CET [38, 43].
Type Analysis. Recently, Multi-Layer Type Analysis [26] (MLTA)
has been proposed—a type analysis system designed to improve the
precision of a simple base analysis (like the one used in Clang CFI).
In contrast to TyPro, MLTA relies on a base analysis and can only
reduce the computed target sets of this base analysis. Fixing errors
coming from the inaccurate base analysis, our main contribution,
is out of scope for MLTA. Older work [29] uses an inexpensive and
imprecise analysis to compute a call graph for code browsing tools.
Other recent tools [30, 50] use local type information and casts near
memory allocations to determine types of heap objects.

9 CONCLUSION
We presented TyPro, a forward CFI scheme for C programs. TyPro
protects indirect calls in legacy, real-world programs without re-
quiring manual effort. Even multi-module programs, dynamically
loaded at runtime, can be protected. TyPro’s type-based approach
has a precision comparable to state-of-the-art solutions used in
production-grade compilers but does not underapproximate indi-
rect call targets, leaving all protected programs intact. TyPro suc-
cessfully targets the sweet spot between security and compatibility.
On average, TyPro does not impose any performance overhead and
only moderate binary size increase. Consequently, TyPro enables
CFI deployment for legacy and modern real-world applications.
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A COLLECTED FACTS IN EXAMPLE
Figure 5, Figure 6, and Figure 7 show the collected and derived facts
for the example source code in Figure 1.

Figure 5: Graphical representation of the collected and de-
rived facts for “scene1_a” and “scene1_b”.

Figure 6: Graphical representation of the collected and de-
rived facts for “scene2_a” and “scene2_b”.

Figure 7: Graphical representation of the collected and de-
rived facts for “scene3_a” and “scene3_b”.

B DYNAMIC MODULES
In contrast to many prior CFI schemes [19, 23, 24, 33, 47], TyPro
can handle code loaded at runtime: dynamically-linked libraries or
runtime loading of shared libraries. To this end, we require that the

357

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://doi.org/10.1007/978-3-319-20550-2_8
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/
https://github.com/giampaolo/pyftpdlib/blob/master/scripts/ftpbench
https://github.com/giampaolo/pyftpdlib/blob/master/scripts/ftpbench
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3337167.3337175
https://doi.org/0.14722/ndss.2015.23233
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://doi.org/10.1145/3274694.3274705
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/SP.2016.60
http://www.angelfire.com/sk/stackshield/
https://doi.org/10.1109/DSN.2012.6263958
https://doi.org/10.1109/INFOCOM.2015.7218424
https://doi.org/10.1109/SP.2013.44
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
http://docs.libmemcached.org/bin/memaslap.html


TyPro: Forward CFI for C-Style Indirect Function Calls Using Type Propagation ACSAC ’22, December 5–9, 2022, Austin, TX, USA

ExternalSymbol : S (exported definitions)
InterfaceType : S × N (types per declaration)
External : N (pairs in module summary)

ExternalSymbol(𝑓 ) ∧ InterfaceType(𝑓 , 𝑡1) =⇒ External(𝑡1) (ES)
External(𝑡1) ∧ PointsTo(𝑡1, 𝑡2) =⇒ External(𝑡2) (E1)

External(𝑡1) ∧ StructMember(𝑡1, 𝑡2, _) =⇒ External(𝑡2) (E2)
External(𝑡1) ∧ UnionMember(𝑡1, 𝑡2, _) =⇒ External(𝑡2) (E3)

External(𝑡1) ∧ Cast(𝑡1, 𝑡2) ∧ ICall(𝑡2, _, _) =⇒ External(𝑡2) (EC)
External(𝑡1) ∧ ICall(𝑡1, 𝑐𝑎𝑙𝑙, _) ∧ TypeCall(𝑡2, _, 𝑐𝑎𝑙𝑙)

=⇒ External(𝑡2)
(ECA)

FunctionPointer(𝑡1, _, _, _) ∧ Cast(𝑡1, 𝑡2) ∧ External(𝑡2)
=⇒ External(𝑡1)

(EFP)

FunctionPointer(𝑡1, 𝑓 , _, _) ∧ External(𝑡1) ∧ InterfaceType(𝑓 , 𝑡2)
=⇒ External(𝑡2)

(EFI)

Figure 8: Additional predicate definitions for dynamic mod-
ule support, and additional rules for module summaries.

loadedmodules are also protected by TyPro. Furthermore, a generic
runtime library must be present. It combines type information from
different modules at runtime, computing new target sets for indirect
calls and updating the necessary checks. Thus, we have to export
type information with every program and shared object. Therefore,
we extend the target set analysis in Section 3 by a module summary
which contains only the type/context propagation information that
can influence the computation of other modules.

To compute a module summary, we add to our analysis the
new relations and rules presented in Figure 8. The final result is
established after computing the External relation, which intuitively
contains all types that can be propagated to or from outside of the
module. This relation is the index set of type/context and type/call
pairs that must be exported in the module summary, if another
module could contain the same pairs. For example, the summary
includes the parameters of an exported function that generate the
same type/context pair in every module it is imported to. The
summary is the subset of all relations except TargetSet, containing
only facts that refer to indices in the External relation.

B.1 Additional Input Generation
To determine which type/context pairs enter the module sum-
mary, we need additional facts collected from the source code,
filling the relations ExternalSymbol and InterfaceType. They de-
scribe the C interface that a module exposes to other modules,
containing similar information like header files in C. We iterate
over all declared symbols of a module, including both imported and
exported symbols, and record their interface types. If the symbol is
a global 𝑔 of type 𝑡 , we record a fact InterfaceType(𝑔, 𝑁 (𝑡, 𝑔)). If the
symbol is a function 𝑓 with signature 𝑟𝑡 𝑓 (𝑎1, . . . , 𝑎𝑚), we record
facts InterfaceType(𝑓 , 𝑁 (𝑎𝑖 , 𝑓 )) and InterfaceType(𝑓 , 𝑁 (𝑟𝑡, 𝑓 )). If
the symbol is visible after linking, we add ExternalSymbol(𝑓 ) or
ExternalSymbol(𝑔).

B.2 Additional Type Analysis
Using additional input facts described in Appendix B.1, we compute
the set of pair indices that must be visible to other modules. This
information is expressed with External relation. It is computed

using the rules shown in Figure 8 including the rule for External
symbols (ES), a group of rules for type visibility ((E1), (E2), and
(E3)), a group of rules for indirect calls’ treatment (they are (EC)
and (ECA)), and, finally, a group of rules for function pointers that
should be referenced in the summary (namely, (EFP) and (EFI)). In
the following, we explain these rules in more detail.

B.2.1 External Initialization. The interface of imported or exported
symbols must be external because other modules can have the same
symbols and, therefore, facts about the same pairs in their relations.
We capture this property of the imported and exported symbols
with the help of (ES) rule.

B.2.2 Type Visibility. When a type is visible externally, its structure
is also visible. If an external type is a pointer type, rule (E1) marks
its pointee type as external. For struct and union types, rules (E2)
and (E3) respectively mark their fields as external.

B.2.3 Indirect Calls. If there is a type transfer between an external
entry and an indirect call, this indirect call could receive function
pointers from other modules. Rule (EC) marks this call as external,
so we include its type/context pair in the module summary. In
addition, rule (ECA) marks the corresponding TypeCall pair as
external, including them in the module summary.

B.2.4 Function Pointers. Facts referencing a function pointer are
considered external if there is a type transfer to any external fact
(as captured by rule (EFP)) because the function pointer could be
transferred to another module at runtime. The pointed function
could become accessible at runtime, even if its symbol is not ex-
ported; therefore, we have to include its interface in the module
summary: Rule (EFI) marks all arguments’ types and the return
value types as external.

After running the computation, External references the type/-
context pairs necessary for runtime TargetSet computations. For
the module summary, we filter the entire fact set to contain only
those pairs. Exporting only filtered facts greatly reduces the file
size of the summary and the runtime of target set computations
during dynamic loading.

B.3 Dynamic Call Target Enforcement
Our approach and its enforcer also support dynamic linking, which
requires additional processing. Using the information obtained by
the analysis described in Appendix B.1, we can see at link time
which target sets might need expansion later. If an indirect call has
an associated index in External, there might be valid targets from
other modules at runtime. When building the switch for such a
call at link time, we do not add an error handler to its default case
but add a new direct call, which we call the trampoline. While the
trampoline target defaults to the error handler, the runtime library
can overwrite it if necessary. If the target sets are amended at
runtime, the trampoline target will point to a new switch, handling
the additional targets.

At runtime, the third component of TyPro, the runtime library,
updates the target sets of all external indirect calls if necessary. The
runtime library is a small C++ library that contains the presented
algorithms and a custom just-in-time compiler. When modules are
loaded during startup or at runtime, the runtime library loads their
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module summary (provided by the analysis discussed in Appen-
dix B.1) from a read-only section. The module summaries from all
loaded modules are combined into a single set of facts. If necessary,
the runtime library will re-run the target set computation from
Section 3.2 on the collected module summary and will eventually
add new targets to the existing target sets. If new targets appear in
the target set of an indirect call, the runtime library will generate a
new switch-case statement. It just-in-time compiles a new function
with a switch over the function identifier and one case for each new
target. Finally, the trampoline of the indirect calls is assigned to this
newly generated function. If a module now calls a function with an
identifier assigned by another module, the newly generated switch
will dispatch the desired function without allowing attackers to
execute the arbitrary functions.

We designed the runtime library with security against memory
corruption in mind. An attacker might try interfering with the
module summaries or the target set computation to weaken TyPro’s
protection. To prevent these attacks, the runtime library exclusively
uses memory from a custom, protected heap. This heap is isolated
from the remaining program; no memory or pointers are shared
with the main program. The heap is read-only by default and is
only writeable during analysis and JIT compilation. An attacker
can only interfere at the exact point when a library is loaded in a
different thread and only if they leak a pointer to the heap.

An attacker might also try to tamper with the just-in-time com-
pilation to inject custom code into the JITing area. The runtime
library avoids this risk by compiling twice: A fresh part of the JIT
area is made writeable, but not executable for the first compilation.
Afterward, the generated code is made readonly. In a second pass,
the JIT checks that the memory contains the expected instructions
only, detecting any attempted attack on the JIT area. The generated
code finally gets executable if the checks succeed. The runtime
overhead of the second compilation pass is negligible compared to
the analysis time. With these two defenses, we are confident that
the runtime library does not introduce new security risks.

B.4 Evaluation
Dynamic loading support is an important feature for any CFI system
such as TyPro. All SPEC programs can dynamically link against a
protected standard library (musl libc). At runtime, computation and
just-in-time compilation take at most 0.57s (perlbench), with 0.25s
on average. Most SPEC benchmarks can avoid runtime computation
completely because they do not exchange functions with libc.

redis nicely demonstrates TyPro’s dynamic loading capabilities:
it has a MODULE LOAD command that can load arbitrary shared objects
at runtime. We tested this command on a protected redis instance
with various protected modules and verified that they load and
are usable. Even though redis had one of the largest fact sets in
our tests, recomputing the target sets after a module load was a
matter of seconds. Given that target sets can be cached and the JIT
compiler’s runtime is negligible, we consider this support and its
performance practical.

C C STANDARD LIBRARIES
As mentioned previously, our approach requires all dynamically
linked libraries to go through the same processing as the program

using it, i.e., the analyses discussed in Section 3 and Appendix B.
However, many related works [19, 23, 24, 33, 47, 49] exclude the
C standard library, for the following reasons: The standard GNU
libc is not compilable by the Clang compiler, contains plenty of
(typeless) inline assembly, and communicates with the Linux kernel
over a syscall interface that cannot be altered.

Instead of excluding the standard library, TyPro uses and pro-
tects musl libc [34], which is compatible with Clang. Only when
functions are sent to the kernel, TyPro resolves the identifiers back
to function pointers before transferring them. A protected musl
libc can be statically linked or used as a regular shared library.

Alternatively, programs relying on the GNU standard library
can optionally link against an unprotected libc. In this case, TyPro
resolves identifiers back to function pointers before transferring
them to the libc, avoiding compatibility issues. To resolve a function
identifier, a switch-case construct is emitted (similar to the one
described in Section 4), returning actual function addresses instead
of direct calls. With this method, TyPro-protected programs can
use the system’s unmodified standard library without breaking
compatibility. This method could also be used to link with other
unprotected libraries, assuming it is known a priori which library
will be unprotected.

D OPTIMIZATIONS
After the facts’ extraction, we perform some minor but crucial
optimizations by omitting unnecessary facts for the final target
computations. These optimizations do not change the result of the
computation but are essential for reasonable performance. First, we
only collect a TypeContextPair fact if its identifier is used in at least
one another relation. If we omit a type, we also do not generate
additional facts relevant to this type definition, e.g., PointsTo or
StructMember facts. TypeContextPair facts unused in other rela-
tions cannot be used in any rule and are therefore irrelevant for
target set computation. Second, we omit primitive C types that are
smaller (in bits) than a pointer, e.g., char or void. It is impossible to
convert a function pointer to or from these types, nor can they par-
ticipate in pointer aliasing or other rule-covered C structs; they are
therefore irrelevant for target set computation. The most prominent
example is the type void, which will never appear in our fact set,
in contrast to void*, which has the same size as a function pointer
and will appear in facts. Third, we collapse chains of direct casts,
e.g., the expression “(fptr_int) ((void*) &f1)” will be seen as
one cast from fptr_long to fptr_int.

Running the computation on fact sets of larger programs is very
time-consuming, in particular when the facts of all input files are
merged. Therefore, we use an optimization based on equivalences
to reduce the input size for the datalog solver drastically. If two
TypeContextPair facts are equivalent, these type/context pairs can
bemergedwithout changing the result of the target set computation,
making the input fact set smaller and the computation faster. In
our implementation, two simple patterns indicate equivalence:
• If we extracted facts Cast(𝑛1, 𝑛2) and Cast(𝑛2, 𝑛1), then type/-
context pairs 𝑛1 and 𝑛2 can be merged.

• If we extracted Cast(𝑛1, 𝑛2) facts and both type/context pairs 𝑛1
and 𝑛2 are pointer type (i.e., we extracted also PointsTo(𝑛1, 𝑛′1)
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ICall( 𝑡1, 𝑐𝑎𝑙𝑙 , 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 ) ∧ FunctionPointer( 𝑡2, 𝑓 , 𝑎𝑟𝑔𝑠𝑓 , _) ∧ 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 = 𝑎𝑟𝑔𝑠𝑓 ∧ 𝑡2 = 𝑡1 =⇒ TargetSet( 𝑐𝑎𝑙𝑙 , 𝑓 ) (ClangCFI)

ICall(_, 𝑐𝑎𝑙𝑙 , 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 ) ∧ FunctionPointer(_, 𝑓 , 𝑎𝑟𝑔𝑠𝑓 , _) ∧ 𝑎𝑟𝑔𝑠𝑐𝑎𝑙𝑙 = 𝑎𝑟𝑔𝑠𝑓 =⇒ TargetSet( 𝑐𝑎𝑙𝑙 , 𝑓 ) (IFCC)

Figure 9: Rules demonstrating the core of Clang CFI and IFCC computation of the final function types for each call.
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Figure 10: Additional size of SPEC and other example programs (in KB).

and PointsTo(𝑛2, 𝑛′2) facts), then type/context pairs 𝑛′1 and 𝑛
′
2 can

be merged.
Merging propagates along with the structure of its types: if two
facts of pointer type merge, their referenced type’s facts also merge.
And if two facts of struct or union type merge, their field facts also
merge. We found this optimization to improve the computation
runtime considerably while not changing the result of the target
set computation.

E SUPPORTING OTHER FORWARD CFI
APPROACHES AND UPDATES.

The rule-based target set computation approach that we use for
TyPro, is also general enough to support the encoding of other CFI
schemes, facilitating their development and comparison. Moreover,
the expressiveness of rule-based CFI encoding allowed us, for in-
stance, to capture the core of the target set computation performed

by Clang CFI [47] and IFCC [49] with only one rule for each of
the approaches. In Figure 9, the rule (ClangCFI) compactly encodes
that the scheme allows only the targets with the exact same types
and number of arguments, while the rule (IFCC) relaxes the re-
quirement of type matching. Obviously, for the example in Figure 1,
the rule (ClangCFI) obtains empty results for all the calls, which
is too restrictive and breaks the legitimate code. Rule (IFCC) is too
permissive, resolving every call to all the functions as they all have
only one argument. Section 6 details how the limitations of these
approaches affect the security and stability of the programs.

Furthermore, the rule system supports updates, either as new
rules or refinements, without changing other parts of the compiler.

F SIZE OVERHEAD
Figure 10 shows the additional size of different programs after pro-
tection with TyPro for all SPEC and real-world example programs.

360


	Abstract
	1 Introduction
	2 Overview
	2.1 Attacker Model
	2.2 Challenges
	2.3 Methodology at a Glance
	2.4 Type Propagation vs. Data Flow

	3 Target Set Computation
	3.1 Analysis Input Generation
	3.2 Type Analysis

	4 Call Target Enforcement
	5 Implementation
	6 Evaluation
	6.1 Correctness
	6.2 Security
	6.3 Performance

	7 Limitations & Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Collected Facts in Example
	B Dynamic Modules
	B.1 Additional Input Generation
	B.2 Additional Type Analysis
	B.3 Dynamic Call Target Enforcement
	B.4 Evaluation

	C C Standard Libraries
	D Optimizations
	E Supporting Other Forward CFI Approaches and Updates.
	F Size Overhead

