DEEPCAPA:
Identifying Malicious Capabilities in Windows Malware

Saastha Vasan*, Hojjat Aghakhani*, Stefano Ortolani’, Roman Vasilenko?, Ilya Grishchenko*,
Christopher Kruegel*, Giovanni Vigna*
“University of California, Santa Barbara, TBroadcom, i[Google
{saastha, hojjat, grishchenko, chris, vigna} @ucsb.edu, ortolanis@broadcom.com, rvasilenko@ google.com

Abstract—Malware detection and classification has been the
focus of extensive research over many years. However, less
effort has been devoted to developing post-detection systems
that identify specific malicious capabilities (or behaviors) in
malware. Such systems play a critical part in identifying and
mitigating the damage caused by malware attacks. Unfortu-
nately, current methods for identifying malware capabilities
involve substantial manual reverse engineering efforts and
context switching between multiple tools, which slows down
an investigation and gives attackers an advantage.

In this paper, we propose DEEPCAPA, an automated post-
detection system that uses machine learning to identify poten-
tially malicious capabilities in malware in the form of MITRE
ATT&CK techniques. Our system operates on sequences of
API calls, extracted from the memory snapshots taken at
key points during the (sandboxed) execution of malware. Our
results demonstrate that DEEPCAPA can accurately identify
malicious capabilities, achieving a precision of 95.80% and a
recall of 93.76% across 29 different techniques.

1. Introduction

Malicious software (malware) poses a significant threat
to computer networks and users. In recent years, there
has been a steep rise in the number of malware attacks.
According to statistics published by AV-TEST [l1]], more
than 100 million new malware samples were detected in
2023. Failure to detect and mitigate these threats can be
catastrophic for organizations and individuals, resulting in
data breaches, financial losses, and damage to reputation.

To combat the ever-increasing number of malware
threats, a significant body of research has proposed both
static and dynamic techniques to detect malicious code [2]—
[6]. More recent approaches have focused on machine learn-
ing models, often based on deep neural networks [7]—[13].
These models use features that are extracted via static or
dynamic analysis techniques, and their goals are either to
distinguish between malicious and benign samples [[14], [[15]
or to classify malware into different families, such as ran-
somware, remote access tools, or information stealers [|16]—
[18]].

Despite achieving good detection rates, most existing
methods provide only limited information about particu-

lar malicious techniques that a malware sample employs.
However, developing effective mitigation strategies relies
on detecting these techniques to identify which system
components require patching. Consider a sample that is
detected as malicious by a malware detection solution. This
malware can perform “Registry Modification” to achieve
persistence, “Process Injection” to gain root privileges, “C2-
Communication” to upload system information, and imple-
ment “Anti-VM” techniques to thwart dynamic analysis.
Identifying these capabilities requires a deeper understand-
ing of the malware’s behavior and a more sophisticated
analysis. This is in contrast to malware detection solutions
that are designed to focus solely on identifying the presence
of malware. Currently, analysts in a Security Operations
Center (SOC) are mostly left to identify and understand
these malware capabilities manually. This process involves
loading the binary into a disassembler to extract static arti-
facts and combining this information with dynamic artifacts
obtained using a debugger as well as network and memory
forensics tools. Unsurprisingly, this process is difficult, slow,
and error-prone. Even with automated dynamic analysis
techniques, malicious capabilities can go undetected if the
malware checks for certain environmental conditions before
executing its payload, such as the OS version, the presence
of certain files, processes, and registry keys.

Recognizing this issue, recent academic work has sought
to automate the identification of malware capabilities. For
instance, Forecast [19] examines memory snapshots of mal-
ware and uses symbolic analysis of its code to predict
capabilities. The industry has also recognized the problem,
with researchers from Mandiant releasing CAPA [20]], a tool
that uses static analysis to detect capabilities in executable
files in the form of MITRE ATT&CK techniques. The
industry relies heavily on CAPA to determine the high-level
capability of malware before performing deeper (and more
expensive) manual malware analysis.

In this paper, we present DEEPCAPA, an automated
post-detection system that uses deep neural networks along
with features extracted from process dumps of malware
programs to identify high-level, potentially malicious be-
haviors in the form of MITRE ATT&CK techniques. Unlike
Forecast and CAPA, which rely on manually crafted rules
to describe malicious techniques, our system can learn the
rules automatically, even when the code is obfuscated. This

approach makes DEEPCAPA more generic, more robust,
and less likely to miss relevant behaviors, which reduces the
likelihood of false negatives — an observation confirmed by
our experimental evaluation results (Section). Our system
relies on sequences of Windows API and library call
extracted from temporal memory snapshots taken by running
malware in a sandbox environment. Unlike CAPA, which
cannot analyze packed malware, our feature extraction on
dynamic artifacts allows us to capture features from packed
code. As a result, our approach intuitively achieves better
code coverage. It is also much more likely to include im-
portant dormant functionality of the malicious code, which
is missed by purely dynamic API call traces.

Our deep learning model operates in two distinct stages.
In the first stage, we perform pretraining on sequences of
API calls. This pretraining process is crucial, as it allows
our model to learn the dependencies between different API
calls. This is similar to how language models for text learn
the dependencies between words in a sentence [21[]-[24].
Following the pretraining step, in the second stage, we
utilize transfer learning to fine-tune our models to identify
capabilities. We have also incorporated attention layers into
the architecture of our fine-tuning step. Attention is a unique
mechanism that compensates for the lack of explainability
often associated with neural networks. This allows us to
extract important sequences of APIs that contribute sig-
nificantly towards identifying the presence of a MITRE
ATT&CK technique.

To train and evaluate DEEPCAPA, we use a dataset of
17,336 samples, along with their process snapshots (this data
was provided by a collaborating security vendor). For each
sample, we also know the MITRE ATT&CK techniques that
were observed during dynamic sandbox execution. In total,
DEEPCAPA can detect 29 different MITRE ATT&CK
techniques (behaviors).

Our experiments show that our system delivers high pre-
cision and recall (95.80% and 93.76%, respectively) across
all 29 techniques. We further extend our analysis of DEEP-
CAPA by performing a baseline comparison with other
state-of-the-art malware capability detection frameworks, in
particular, Forecast and CAPA. We also manually analyzed
the attention results, and reverse-engineered and inspected
the disassembly code for a subset of false positives and false
negatives.

In summary, we make the following contributionsﬂ

e« We propose DEEPCAPA, a post-detection system
that operates on memory snapshots of malware and
identifies capabilities based on the MITRE ATT&CK
taxonomy.

« We introduce a feature engineering pipeline to ex-
tract API call sequences by processing one or more
memory snapshots.

1. We refer to both Windows library and system calls as “API calls” for
simplicity.

2. We will publicly release the source code of our system at https:/
github.com/ucsb-seclab/DeepCapa

e We designed and implemented a deep learning
pipeline that is capable of capturing the relationships
between API call sequences and program behaviors
and that provides insights to a human analyst by
leveraging the attention mechanism of our neural
network.

e Our results show that DEEPCAPA delivers accurate
results. Moreover, our comparison with state-of-the-
art systems demonstrates that our approach to au-
tomatically learning behaviors is more general and
leads to fewer false negatives.

2. The MITRE ATT&CK Framework

The ATT&CK framework was originally created by
MITRE [25]] out of a need to systematically categorize the
ever-changing landscape of malware tactics, techniques, and
procedures (TTPs). The MITRE ATT&CK framework is
considered a modern way of looking at multi-stage cyber
attacks (kill chains) and has become the industry standard
for describing malicious behaviors.

At a high level, the MITRE ATT&CK framework is
a behavioral model that categorizes attacks into factics
and fechniques. Tactics denote short-term, tactical adver-
sary goals of an attack. They include Persistence, Privilege
Escalation, Defense Evasion, Credential Access, Discovery,
Lateral Movement, Execution, Collection, Exfiltration, and
Command and Control. Techniques describe the techni-
cal means through which tactical goals are achieved (im-
plemented). For example, an information stealer malware
program might first mask itself as a legitimate applica-
tion to trick the user into executing it. Then, it creates
a registry key to achieve persistence, performs checks to
detect the presence of a virtual machine, collects informa-
tion from the system, and eventually sends that collected
data to its C&C server using the HTTP protocol. The
behaviors of this info stealer malware can be described
using the following MITRE ATT&CK techniques: 77036
(Masquerading), 71027 (Obfuscated Files or Information),
T1112 (Modify Registry), T1547 (Boot or Login Autostart
Execution), 71082 (System Information Discovery), T1497
(Virtualization/Sandbox Evasion), and 77071 (Application
Layer Protocol).

3. Methodology

In this paper, we propose DEEPCAPA, a post-detection
system to identify the capabilities of a malware program in
the form of techniques defined by the MITRE ATT&CK
framework [25[]. Our system takes as input one or more
memory snapshots taken from the execution of a Windows
PE executable in a sandbox environment. It then outputs
a set of MITRE ATT&CK techniques that this program
implements.

Figure[I|shows an overview of our system. DEEPCAPA
operates in two main steps. In the first step, it reconstructs
a CFG of the program’s code from the memory snapshots

https://github.com/ucsb-seclab/DeepCapa
https://github.com/ucsb-seclab/DeepCapa

(Section @ Using the CFG, the system extracts API call
sequences that the program can potentially execute. In the
second step, the API call sequences are encoded and fed into
a neural network model, which consists of four transformer
encoder layers (Section [3.2] and Section [3.3). The goal
of this model is to identify malicious capabilities and the
corresponding API calls associated with them.

3.1. API Call Sequences Extraction

In the first step, DEEPCAPA extracts possible API call
sequences that the program under analysis might invoke. In
this work, we use API call sequences as a way to capture
and model the behaviors of (malicious) code. This approach
has a long tradition: API call sequences have been used by
numerous tools to distinguish between malicious and benign
activities [21]]-[24]. Also, it makes intuitive sense to use API
functions — and their sequences — to characterize program
behaviors. After all, many behaviors lead to changes in a
program’s environment or to “visible” and external effects.
This includes changes to files or configuration settings,
packets that are sent over the network, code that is injected
into another process, or windows that are popped up. All
these changes require the invocation of the operating system
and Windows library API functions, and our system analyses
these invocations. The API call sequences extraction step
proceeds in four stages: CFG Construction, CFG Merging,
CFG Reduction, and CFG Exploration.

CFG Construction. DEEPCAPA takes as input one or
more memory snapshots of a Windows PE program that
is dynamically executed in a sandbox. A new memory
snapshot is taken whenever one of the following interesting
system events occurs: (1) Execution of an API call that
causes a new process creation or a new file creation. (2)
Virtual memory execution, meaning that code execution
happens outside of the original PE image. (3) A change
to the original PE image (e.g., because of code unpacking).

We extract all sections marked as executable from the
memory snapshots, including segments generated during
runtime. Then, to construct the control flow graph (CFG)
from these code sections, we recognize function boundaries
in them and provide this information, together with the code
sections, to a disassembler (we use IDA Pro [26]) via our
custom-designed loader. Each node in the generated CFG
represents a basic block — a set of instructions that execute
sequentially. This method of CFG generation effectively
handles various malware behaviors, such as dynamic code
allocation, making data sections executable, or employing
packing and unpacking techniques. Interestingly, our exper-
iments have not revealed any significant efforts by malware
authors to obstruct the extraction of control-flow graphs
from the unpacked code extracted during runtime. However,
we acknowledge that this might change in the future. In
such cases, we may need to employ more advanced tech-
niques or leverage prior work on robust CFG generation
approaches [27], [28].

CFG Merging. Our CFG Merging technique reconstructs
the control flow graph (CFG) of a program from multiple

memory snapshots (taken during this program’s execution).
Since different snapshots may contain different (parts of)
the CFG — recall that malware might unpack parts of its
code during run-time — we need to merge the CFGs across
snapshots to obtain a more comprehensive and accurate view
of the program. To perform this, we leverage the informa-
tion gathered from the previous step, where we identified
function boundaries. We start by considering the functions
from the first snapshot and iteratively add the CFGs of any
new functions encountered in subsequent snapshots. When
we encounter a previously seen function, we compare its
CFG in the newer snapshot with the one in the previous
snapshot. If the newer snapshot’s CFG has additional nodes
or edges, we incorporate these changes into our merged
CFG. Specifically, we analyze indirect calls in each function
and add inter-procedural edges if the target information is
present in any of the snapshots’ CFGs. By applying CFG
Merging, we can create a unified CFG, starting from the first
snapshot to the last, and obtain a more complete picture of
the program.

CFG Reduction. As mentioned previously, we focus on
API call sequences to capture program behaviors. Therefore,
some information captured in the CFG is redundant, and we
filter it out. In particular, we remove all instructions from
basic blocks that are neither jump nor call instructions to an
internal function or an external API. Then, we remove all
blocks with no instructions from the CFG, while keeping
the connectivity of the graph intact. To preserve the con-
nectivity, we follow two rules when removing blocks with
no instructions: (1) We always keep the start block and the
end block of each function. (2) For every other block, if a
block B does not contain any instruction, we generate edges
from all of B's parent blocks in the graph to all its successor
blocks.

CFG Exploration. Once the CFG has been simplified, we
perform probabilistic random walks over the resulting graph
to obtain short, fixed-length sequences of API calls. We start
the random walk from a node with low API coverage to
achieve better code reach. The intuition is that our approach
will capture enough relevant sequences so that our neural
network model will identify the behaviors. At the end of
the CFG Exploration stage, we extract S sequences of API
invocations, where S is the number of probabilistic random
walks performed on the sample’s CFG, and each sequence
consists at most of A API calls. In our experiments, we set
S to 350, and A to 20. We provide a detailed explanation of
our algorithm in the Appendix

Discussion of the API Call Sequences Extraction Ap-
proach. An important consideration for the API call se-
quences extraction approach is that it must be robust against
malware authors’ attempts to evade analysis and hide rel-
evant behaviors (API call sequences). First, we observe
that our approach is not influenced by the modification,
reordering, or substitution of non-control-flow instructions,
blocks, or functions, since the CFG reduction process al-
ready removes these instructions. However, the attacker
could insert additional API calls along “dummy” paths that
are not actually executed during run-time. This is why we

@ @ S1| a; | ay| as azl a,| .
Snapshot 1 CEG CFG ‘ Pretraining
. i S2| a |as| a
Construction Merging |
napsho ‘ S3| as | au| a1 | @ ‘
1
@ CFG @ CFG H “ . .
Snapshot X : Exploration ' Fine-Tuning
Rodustion ’ se[Lo [ar] as [] o] Feature
Extractor
Me;‘:rgasx:;}':hms Extracting API Sequences Extracted Sequences P o eaaaasaeessaseo
P e e e e e e nr e r e n e e nneennneeas { Detected
2* " e Techniques
I P I &t - N :
i - — :
I —_— [z 3.llzz| | x4 i
i (S i[5z i
H sa a H
\) 7
A 7 == N\ b e, .. H |
/7 1 e .] .
H 2 o - P H
152 —»? [52 sz $ollzz| | xa Unmasking | |
¢ | Clag|F= |28)F- layer | —
i L L y i Sequence Attention | :
~3 i Positional Layer
S'123 E Embedding HE 1 Sequence
N . = Attention
R(EmEIS - |
1 ZE - -
\ L) U JLJJ Y

Pretraining Fine-Tuning

Figure 1: An overview of how DEEPCAPA operates.

perform (many) probabilistic random walks over the graph;
the intuition is that our approach will capture enough rele-
vant sequences so that our neural network model will still
identify the behaviors. Finally, an attacker could also cam-
ouflage relevant API call sequences by adding “padding”
between all calls along the execution path, but this padding
requires a substantial amount of calls to prevent our model
from recognizing the sub-sequence that indicates a behavior.
While the goal of DEEPCAPA is not to detect malware, we
believe that attackers would not likely expose their malware
to easier detection just to thwart the analysis of individual
behaviors. We continue our security and robustness discus-
sion of DEEPCAPA in Section

3.2. Neural Network Architecture

In this section, we describe our neural network model.
Our model is inspired by the architecture of large language
models (LLMs) [29]-[32]]. These models use the transformer
architecture [33]], which was originally proposed to under-
stand the context and meaning of text data by modeling the
relationships between words and sentences. We adapt this
architecture to the task of detecting malware capabilities
based on sequences of API calls.

Our model takes as input a collection of API call se-
quences S x A (Section [3.I) of a malware sample x. Each
individual API call is treated as a word, and each sequence is
viewed as a sentence. Our model views each input sample
as a document made up of API call sequences. However,
unlike traditional text documents, for which sentence order
and position are crucial, the order of sequences within our
collection does not affect the program behavior.

We train our model in two phases: pretraining and fine-
tuning. In pretraining, we train the model on a large corpus
of unlabeled API call sequences to predict an API call given
the previous and following API calls within the sequence.
This is an unsupervised learning process, where the model
learns the general patterns and contexts of the API calls. The
pretrained weights of the model (¢) capture general informa-
tion and context from the input data. In fine-tuning, we train
the model on a labeled dataset of API call sequences. The
labels indicate the malware capabilities associated with each
sample. This is a supervised learning process, where the
model adapts its pretrained knowledge to the specific task
of identifying malware capabilities. We also add an attention
layer in this phase, which helps the model focus on the most
relevant sequences for detection. The pretraining and fine-
tuning phases enable our model to create rich embeddings
for the input data, capturing the context and information
needed to identify malware capabilities. Prior to explaining
these two phases in detail, we first describe how we embed
sequences of API calls into numerical representations for
processing by the transformer and its subsequent layers.

Feature Extractor Network. Our model’s feature extractor
network is comprised of three distinct layers. The first
layer is the API-call embedding layer. This layer’s function
is to transform each API call within a sequence into a
vector of real numbers representing it in a high-dimensional
space. This function enhances the model’s comprehension of
sequential data and reduces the input size for the subsequent
layer. The second layer is the positional embedding layer,
which incorporates the position of each API call within the
sequence. This helps the transformer models to learn the
context and meaning of sequential text data by observing the

relationships among them. The third layer is the contextual
embedding layer, which consists of transformer encoders
that process each API call within a sequence in relation
to all others in both forward and backward contexts. This
comprehensive understanding of the input data enables the
model to capture intricate patterns, dependencies, and rela-
tionships within an API call sequence.

3.3. Training Procedure

We now explain the training process of DEEPCAPA
consistsing of a pretraining stage, followed by a fine-tuning
stage.

Pretraining Stage. We pretrain our model with the Masked
Language Modeling (MLM) objective, originally proposed
for training Large Language Models (LLMs) [29]-[32]]. We
randomly mask 15% of the API tokens in each sequence
with a special token <MASK>, following BERT [30]]. We
also use four other special tokens: <SEQ> and </SEQ> to
mark the beginning and the end of a sequence, <PAD> to
fill the sequences with different lengths to a uniform size A,
and <UNK?> to account for out of vocabulary tokens during
testing. We then feed the masked sequences to a transformer
encoder to capture contextual information. The encoder’s
output is processed by a layer of size H x U, where H is
the embedding dimension, and U is our vocabulary size
(Table [I). The goal of the pretraining stage is to uncover
the masked tokens and improve the model’s understanding
of API call semantics and context.

Fine-Tuning Stage. With the API call representations
learned from a wealth of unlabelled data and stored within
the parameters of the encoder network, we now proceed with
the fine-tuning stage. In this stage, we clone the pretrained
weights ¢ for each MITRE ATT&CK technique m (i.e.,
¢, < ¢), and append it to a new attention layer, followed
by a convolution layer, a dense neural network, and a linear
binary classifier. We will refer to them together as g,,. We
fine-tune our model g,,(¢,,(x)) by optimizing the following
loss function:

mn B (L@o))

/!
67,6 (.ym) train

where 6/, and 6, represent the parameters of ¢, and the
linear classifier within g,. The fine-tuning loss function min-
imizes the cross-entropy between the predicted probabilities
and the ground-truth label y,,, which indicates whether the
sample x actually implements the technique m or not.
Sequence Attention Layer. Not all API call sequences
of a given sample x characterize its behavior equally, so
we use an attention network to give weights to each API
call sequence in x. When predicting a technique for x, the
attention weights can indicate the most influential APT call
sequences in x.

To compute the attention weights, we first take the
mean of the output of the transformer encoder (which has a
dimension of § X A x H) along the dimension A. Doing so
gives us a 2-dimensional S x H array W where each row is

the vector representation Wj of the k-th API call sequence
created in the transformer embedding space. We then feed W
to a shallow neural network with three layers of H X H x 1
neurons to compute a weight for each sequence vector. We
then pass the computed weights to a softmax layer so that
the normalized weights sum up to one. We then use these
normalized weights to scale the mean vector representation
of the API call sequences (W). Therefore, with this attention
network, we embed x into a 2-dimensional array (with
the dimension of S x H, where rows are sequence hidden
vectors). We train this attention network along with the main
network during optimization.

Convolutional Neural Network. The input of this layer
is a 2-dimensional array where the rows are sequence hid-
den vectors, each scaled with the corresponding sequence
attention weight. Recall that we extract a list of API call
sequences for each sample x. The order of the sequences in
this list has no effect on the sample’s actual behavior, thus,
we make use of a one-dimensional CNN. This is because,
unlike RNNs, CNNs are better suited to handle shifts in the
data. We use a max-pooling layer after multiplying the input
with so-called sliding windows. We flatten the output of this
layer, so it can be processed by a dense neural network.
Dense Network. CNNs are typically followed by a few
dense layers, so the CNN features can be processed together
by the dense layers prior to the classification. DEEPCAPA
follows a similar approach. The result of the dense layer
is passed to a dropout layer, which implements dropout
randomization [34]], a technique that is proposed to prevent
neural networks from over-fitting and increase their perfor-
mance.

Linear Classifier. The output of the dense layer is then
passed to a linear classifier, where DEEPCAPA employs
a single binary classifier g, for each MITRE ATT&CK
technique m.

4. Experimental Evaluation

In this section, we evaluate and analyze the performance
of DEEPCAPA. We assess the general performance of our
system using a dataset of 17,336 Windows PE files and 29
unique MITRE ATT&CK techniques. We then perform a
comparison with Forecast and CAPA. Finally, we extend
our evaluation of DEEPCAPA by manually analyzing false
positives and false negatives. To examine if our model is
able to generate explainable outputs, we also analyze the at-
tention weights at the sequence call level. Before discussing
the results, we first describe in more detail the dataset that
we use to train and evaluate DEEPCAPA.

4.1. Dataset

For this research, we received a dataset of malicious
samples from a security vendor, along with their memory
snapshots and dynamic analysis reports. The dataset consists
of 17,336 malicious samples observed in the wild between
March 2020 and June 2022. We do not have benign samples

104 -

Samples (log scale)

10°

[0 Manual Heuristics
[Security Vendor

© D D D > O DD S D o D> D
CEERSRS X SRR IR RN SR X R g /\@"’

S
AT QYK

";
N

(Y

& o &
GRS

PO

NS
@

O ”)
N »
PO

>
o,Q’

2 P qﬁ” «9 © bq’
& @) » && S QS @

LY LY LY LY

Techniques

Figure 2: Labels generated by the security vendor (dynamic sandbox reports) and our manual (static) heuristics.

in our dataset, as the goal of DEEPCAPA is not to dis-
tinguish between malicious and benign code, but rather to
identify the detailed capabilities and behaviors of a sample
after it has been detected as malicious by malware detection
tools.

To better understand the diversity of malware families in
our dataset, we retrieved and analyzed the anti-virus (AV)
labels for all samples. We queried the AV labels supplied
by VirusTotal [35]] and processed them using AVClass2 [36]
to extract the malware family names. We observed that
AVClass2 was not able to detect malware families for 8.9%
of our samples. From the remaining 91.1% of samples,
we identified 912 different malware families, covering a
wide variety of relevant threats. The ten most prominent
families, namely Berbew, Stihat, Virut, Sytro, Stopcrypt,
Sivis, Kwampirs, Stop, Formbook, and Noon, collectively
accounted for 34.62% of all the samples in our dataset.
Ground-Truth Labels. Training DEEPCAPA requires ac-
curate and comprehensive labels of malware capabilities
in the form of MITRE ATT&CK techniques. However,
generating these labels is not trivial [37]], as malware behav-
ior can vary depending on execution context, environment,
and user input. Malware often employs evasion techniques
such as encryption, obfuscation, or packing, and can exhibit
complex behaviors implemented through various combina-
tions of API calls, making accurate detection and labeling
challenging. To address these challenges and obtain com-
prehensive ground truth labels for our dataset samples, we
utilize two sources: dynamic analysis (sandbox) reports from
a security vendor and precise (though incomplete) static
heuristics we designed.

The security vendor provides a list of MITRE ATT&CK
techniques exhibited by the malware sample during sandbox
execution. However, this method only captures executed be-
haviors, potentially missing dormant behaviors, or behaviors
present in malware samples employing evasive techniques.
To complement the sandbox reports, we developed a set
of static API call-based detection heuristics covering 17
MITRE attack techniques. These heuristics aim to capture
potential behaviors in both executed and non-executed code
and are applied after the CFG Exploration phase (discussed
in Section [3.I). Our API call-based detection heuristics are

narrow and effective in identifying techniques characterized
by specific API calls, such as T1112 (Modify Registry),
T1082 (System Information Discovery), and T1049 (System
Network Connections Discovery). However, they may miss
more complex techniques like T1055 (Process Injection),
T1071 (Standard Application Layer Protocol), and T1547
(Boot or Logon Autostart Execution), which require analy-
sis of multiple API calls. Conversely, vendor labels from
sandbox reports are more effective in detecting complex
techniques but miss those present in dormant code.

We combine static and dynamic sources to compile
a more complete and reliable set of malware capability
labels. Figure [2]illustrates the number of malicious samples
detected for each MITRE ATT&CK technique using both
sandbox reports and static heuristics. Across our dataset, we
identify 29 unique MITRE ATT&CK techniques, reflecting
various phases of an adversary’s attack lifecycle.

However, our goal for DEEPCAPA is to be able to
generalize when training on these labels, i.e., detect more
techniques than the ones provided by the labeling mecha-
nisms. Our analysis in Section 4.4 provides evidence that
DEEPCAPA can identify behaviors missed by the labeling
methods.

4.2. General Performance

Training Setup. We partition our dataset into training,
validation, and test sets with a (70%, 15%, 15%) random
split. We use the validation set for hyperparameter tuning
and leave the test set unseen, except for when we report
the results. In particular, our training, validation, and test
sets consist of 12,111 samples, 2,573 samples, and 2,652
samples, respectively. As stated in Section[3.3] DEEPCAPA
operates in two stages; pretraining and fine-tuning.

For pretraining, we build the feature extractor network
¢ by minimizing the cross-entropy loss function computed
over the entire training set. Using the validation set, we tune
the hyperparameters of ¢. Table [I| shows the values we have
tried for these hyperparameters and the final selected values.

In the fine-tuning, for each technique m, we use a learn-
ing rate of 10~* to optimize the loss function (Equation
on a balanced training set, with 50% of the samples having

Table 1: The hyperparameters used to build the feature
extractor network ¢.

Parameter Candidate Values Final Value
Batch Size 350
Unique APIs - U 3868
Number of API-call in Sequence - A [10, 20, 30, ..., 50] 20
Number of Sequences - S [50, 100, 150, ..., 400] 350
Embedding Dimension - H [64, 128, 256, ..., 1024] 768
Transformer Encoder Layers - 4
Attention Heads - 4
Dense Layer Neurons - § [16, 32, 64, ..., 512] 64
CNN - Kernel Size (3, H)
CNN - Kernel Stride 1
CNN - Number of Kernels [3, 4, 8, 16, 32] 8
MaxPool - Kernel Size [(2,H), ..., (7,H)] (3,H)
MaxPool - Kernel Stride [1, 2, ..., Kernel Size] 1
Dropout Probability 02,03,...,09 0.1
Optimizer [Adam, SGD] SGD
Optimizer Learning Rate [0.1, 0.01, 0.001, 0.0001] 0.0001

a positive label (i.e., the technique is present), and 50% of
the samples having a negative label (i.e., the technique is
not present). To make the results easier to interpret, we use
a 50/50 split for the test set as well.

Cost Analysis. Our base system comprises of an Ubuntu
18.04 machine (with 377GB RAM, a 96-core 2.10GHz
CPU, and 1xRTX-Titan GPU). We use the NetworkX [38]]
package to generate CFGs from the memory snapshots,
and we leverage the PyTorch [39]] framework to implement
our neural network model. On average, extracting the API
sequences from a sample (consisting of multiple memory
snapshots) takes 181 seconds. The training for each batch of
input takes 0.12 seconds. For inference, it takes 1.1 seconds
to load our model with stored weights and 0.04 seconds to
process a batch of inputs and output the detected techniques.
Results. For each MITRE ATT&CK technique m and
its corresponding binary classifier g,,(¢,,) defined in Sec-
tion [3.3] we calculate and report the precision and recall
for the positive class in Table [9] The Aggregated Precision
is calculated as TP+ (TP+ FP), and the aggregated recall
is calculated as TP+ (TP + FN). Where TP, FP, and FN
represent the total number of true positives, false positives,
and false negatives, computed over all 29 techniques. As
shown in Table [in the appendix, the aggregated precision
and recall for all techniques are 95.80% and 93.76%, re-
spectively. To interpret these results in an easier way, we
divide all 29 techniques into an API-Call-Based Set and a
Generic Behavior Set:

API-Call-Based Set (17 Techniques). This set contains
techniques that are usually implemented by directly calling
one (or a small number of) API calls that are directly
responsible for a specific behavior. For example, consider
the T1112: Modify Registry technique. One common im-
plementation invokes the following sequence of APIs: Re-
gOpenKey, RegQueryValue, RegSetValue and RegCloseKey.
We expect that our classifier recognizes that this sequence
is associated with the T1112: Modify Registry technique and
will report the appropriate behavior when it identifies such
a sequence of calls in the code of a sample. Moreover, it
is unlikely that this sequence of calls is used for anything
other than modifying the registry, so it is unlikely to trigger
incorrect results. Since DEEPCAPA bases its detection on

(sequences of) API calls, we expect that it will deliver
particularly accurate results for techniques in this set.
Generic Behavior Set (12 Techniques). The techniques
in this set typically do not have a clear relationship with
a specific set of standard API calls. This can result from
multiple factors. First, certain behaviors are very generic
and can be implemented in many different ways, leading
to many possible sequences of API calls. Second, certain
behaviors are implemented via API call sequences that have
multiple uses. Hence, the presence of a certain API sequence
is a weak signal that a certain behavior could be present,
and reporting a behavior based on such a sequence alone
could lead to many false positives. Third, certain behaviors
are “out of scope” for our analysis since they do not lead to
any API calls at all. Consider, for example, the T1564: Hide
Artifacts technique. This behavior is typically implemented
by hiding all artifacts associated with malicious behavior
by creating computing regions that are isolated from com-
mon security instrumentation, such as through the use of
virtualization technology.

Discussion. We expect our system to deliver better results
for the API-call-based techniques. In fact, this is true, and
our results for these 17 techniques show an aggregated
precision and recall of 97.33% and 95.78%, respectively.
Somewhat more surprisingly, our classifier also delivers
good results for the generic behavior techniques, with an
aggregated precision and recall of 88.40% and 84.29%, re-
spectively. We explored this finding in more depth and found
three main reasons. First, in some cases, the classifier simply
(and correctly) learned the different ways to implement a
certain behavior. Second, the neural network classifier tends
to capture any useful pattern, regardless of whether it is
directly semantically relevant to the technique or not. Thus,
we sometimes find characteristic sequences of API calls that
are not directly responsible for the detected behavior but
are used around the code that implements the actual be-
havior, for example, to prepare or set up certain operations.
Finally, there are a few cases where the classifier learns
API sequences that are characteristic of a malware family
(or a small number of families) that are predominantly
responsible for a certain (uncommon) technique. Of course,
in this case, the classifier will produce correct results, but
for the wrong reason. We discuss this aspect in more detail
in Section

4.3. Comparison with Existing Work

This section presents a comparative analysis of our
system, DEEPCAPA, with two state-of-the-art tools from
academia and industry: CAPA [20] and Forecast [19]. To
ensure a fair comparison, we translated the capabilities
reported by Forecast into the MITRE ATT&CK techniques
utilized by our system and CAPA. This translation enabled
us to align three behaviors detected by Forecast with three
corresponding techniques detected by DEEPCAPA and
CAPA, specifically 71055 (Process Injection), 71071 (Ap-

plication Layer Protocol), and /497 (Virtualization/Sandbox
Detection).

We conducted two experiments for this comparative
analysis. The first experiment evaluates DEEPCAPA and
CAPA using a dataset of 14 samples previously used and
reported in the Forecast paper [[19]. The second experiment
compares the performance of Forecast and CAPA with
DEEPCAPA using our dataset. The outcomes of these
evaluations are summarized in Table 2A] and Table 2B] with
a comprehensive discussion and analysis provided below.

Table 2A: Comparing capabilities identified by DEEP-
CAPA (D), Forecast (F), and CAPA (C) for the 14 samples
from the Forecast’s evaluation.

Family T1071 T1055 T1497

F C D F C D F C D
Rokrat 1 0 1 1 0 1 1 0 1
Thonest 0 0 0 1 0 1 0 0 0
Bokbot 1 0 1 1 0 1 0 0 1
AcridRain 1 0 1 0 0 0 0 0 0
AthenaGo 0 0 1 0 0 0 1 0 1
AdamLocker* 1 0 - 1 0 - 0 0 -
Marap 0 0 1 1 0 1 0 0 1
Abaddon 0 0 0 0 0 0 0 0 0
ATI 0 0 1 0 0 0 1 0 1
TeslaAgent* 1 0 - 1 0 - 0 0 =
Andromeda 1 0 1 1 0 1 0 0 1
AvCrypt 1 0 1 0 0 0 1 0 1
Avemaria 1 0 1 1 0 1 0 0 0
Aveo 1 0 1 0 0 1 0 0 0

[Total [9 0 10 | 8 0 7] 4 0 7]

Table 2B: Comparison of precision and recall delivered by
DEEPCAPA, Forecast, and CAPA for different techniques.

Tech ID Forecast CAPA DEEPCAPA
Prec. Recall Prec. Recall Prec. Recall
T1071 98.03 33.95 - - 93.88 93.31
T1055 64.43 60.19 100 2.13 94.89 91.50
T1497 88.19 68.42 100 8.58 94.35 94.48
T1112 - - 100 6.13 100.00 97.92
T1027 - - 100 49.54 90.12 84.13
T1033 - - 100 8.18 94.15 92.56
T1056 - - 100 16.26 100.00 96.65
T1082 - - 100 31.03 99.96 98.52
T1134 - - 100 18.96 100.00 96.43
T1070 - - 100 1.63 99.28 98.20
T1057 - - 100 11.47 91.40 92.72
T1518 - - 100 20.5 97.63 93.42
T1564 - - 100 8.26 100.00 84.28
| | Total | 81.34 | 53.61 | 100 | 12.54 | 97.14 | 94.72 | |

CAPA. CAPA performs static analysis on malicious exe-
cutable files to detect their malicious capabilities (behav-
iors). It identifies behaviors using handcrafted rules that
specify different signals, such as API calls, strings, etc. In
the first experiment, we found that CAPA could not detect
any of the three capabilities in any of the 14 samples from
Forecast’s evaluation. In the second experiment, we used
our own malicious executable files and checked for the 12
MITRE ATT&CK techniques that both DEEPCAPA and
CAPA can detect. The results showed that CAPA had a
high precision of 100% but a low recall of 12.54% over
these 12 techniques. This is because CAPA relies on very
specific rules that are tuned to identify particular behaviors

but fail to capture different variations of implementations of
techniques.
Forecast. Forecast employs symbolic execution to explore
code and identifies capabilities based on hand-crafted heuris-
tics, which consider API calls, arguments, and data-flow
facts. For the first experiment, we processed the 14 samples
used by Forecast in its evaluation using DEEPCAPA. We
found that DEEPCAPA could not extract behaviors for two
samples (Agent Tesla and AdamLocker) as they are .Net ex-
ecutables. However, for the other 12 samples, DEEPCAPA
detected all behaviors detected by Forecast, and additionally
detected three more true positives for T1071, one more true
positive for T1055, and three more detections for T1497.
In the second experiment, we applied Forecast’s capa-
bility detection rules on the API call sequences extracted
by DEEPCAPA. We chose this approach because DEEP-
CAPA initiates the analysis of the program from the be-
ginning, while Forecast starts its analysis at a later stage
of program execution. Although starting Forecast’s analysis
from the beginning of the program could also work in prin-
ciple, it could lead to a path explosion due to symbolic ex-
ploration. Consequently, we could not directly run Forecast
on our memory snapshots when testing on our dataset. We
acknowledge that applying Forecast’s capability detection
rules to our API call sequences may not perfectly represent
Forecast’s actual performance. This is because DEEPCAPA
only considers API call sequences, whereas Forecast also
takes into account data-flow facts. Therefore, Forecast’s
rules may overestimate the presence of capabilities when
applied to our API sequences. As a result, we should
interpret the precision numbers (Table reported for
Forecast with a grain of salt. However, the recall results are
relevant, as they should represent an upper bound of what
we would expect the real Forecast system to detect. Our
implementation of Forecast’s rules yielded an aggregated
precision and recall of 58.03% and 41.41%, respectively.
In comparison, DEEPCAPA demonstrated an aggregated
precision and recall of 97.14% and 94.72%, respectively.
The precision and recall values for DEEPCAPA are slightly
different from those reported elsewhere in the paper due to
the use of only 13 MITRE ATT&CK techniques for this
analysis. As previously mentioned, it would be unfair to
draw any conclusions based on the precision results. How-
ever, we argue that the recall value is relevant and highlights
the problem of false negatives (missed behaviors) because
manually-written rules and heuristics are much more narrow
in scope than the models learned by DEEPCAPA.

4.4. False Positive Analysis

During our evaluation, we observed that for some mal-
ware samples, DEEPCAPA detected dormant capabilities,
i.e., those not observed during the execution. The number
of samples for each such technique is depicted in Figure [3]
The observation that, for some techniques, dynamic labels
are incomplete prompted us to conduct a thorough false-
positive analysis to identify potential false negatives in our
ground-truth labels.

1000

Samples (log scale)
=
S
3

=
1

o © o N
P P &L I
PO SRS PG

O A
ST &S
Techniques

el
<
S

Figure 3: The number of samples with dormant capabilities
(per technique) detected by DEEPCAPA.

As discussed in Section A} we derive our ground
truth labels by observing malware samples in a sandbox
environment and by using static API call heuristics to detect
the presence of certain API patterns indicative of a specific
technique.

Table 3: Analysis of false positives for API dependent
techniques.

|| TechID | #Examined FPs | #Incorrect FPs | #Validated FPs ||

T1071 10 6 4
T1055 10 6 4
T1497 10 5 5
T1049 10 4 6
TI518 10 3 7
T1083 4 1 3
T1033 10 1 9
T1082 [[0
T1070 10 0 10
T1547 10 0 10
T1057 10 0 10
[an 7 95 [27 [68]

As shown in Table]of Appendix[A] our system reported
512 API-call-based false positives. For each of these false
positives, our classifier reports the presence of a certain
technique, but this “detected” technique is not in our ground
truth. To determine whether each false positive is indeed a
false positive or a true positive (i.e., the ground truth is
incorrect), we examined false positives for all techniques in
the API-call-based set. Specifically, we randomly selected
10 false positives for each technique and manually reverse-
engineered the corresponding malware sample. If a tech-
nique contains less than 10 false positives, we analyze all
of them. In total, we manually analyzed 95 false positives.

Table [3] shows the results of this analysis. We man-
aged to manually locate the implementation of the detected
technique in the sample’s code in 27 cases (out of 95
false positives). Extrapolating this finding and assuming a
proportional number among all 512 API-call-based false
positives, we would get an additional 139 true positives.
As a result, the aggregated precision for this set would
improve to 98.05% (+0.72%). These results highlight the
incompleteness of our ground truth labeling. We believe

that our labeling process misses complex, dormant behaviors
that our system is capable of capturing. Complex behaviors
refer to techniques that can be implemented by different
combinations of multiple API calls, including important
behaviors such as Process Injection (T1055), Application
Layer Protocol (T1071), Virtualization Evasion (T1497), and
System Network Connections Discovery (T1049). Our static
ground truth labeling only captures narrow sets of API calls
and may miss such techniques. Our manual examination
supports this hypothesis. For the four aforementioned com-
plex techniques, we found that 52.5% (21 out of 40) of the
reported false positives were actually true behaviors missed
by our ground truth labels but correctly identified by our
system. However, we also identified 68 cases out of 95
false positives that are indeed false positives. A possible
reason for these false positives is the insufficient attention
mechanism of our model. These validated false positives can
occur due to the high noise in the input API call sequence
during the training stage. Our system may learn to associate
a particular reoccurring noise pattern with a behavior. Then,
when a similar noise pattern is encountered in a sample
during the testing phase, our model mistakenly identifies
the presence of the behavior.

4.5. False Negative Analysis

As shown in Table O] our system produces 1,477 false

negatives. Since our ground-truth labels are based on ob-
servations during dynamic execution or based on our con-
servative API heuristics, a positive label is indeed very
likely to be correct. That is, we can assume that all 1,477
reported false negatives are indeed true false negatives. To
investigate the root cause for a false negative (x,m), we
manually analyzed the disassembly code of x and attempted
to locate the implementation of technique m. Specifically,
we randomly selected 10 false negatives for each technique
and manually reverse-engineered the corresponding malware
sample. If a technique contains less than 10 false negatives,
we analyzed all of them for a total of 165 false negatives.
Table [] shows the results of our analysis. We noticed two
main sources that contributed to the failure of our system
to detect relevant techniques.
Indirect API Calls. During our analysis, we found that, in
35 samples, the API calls responsible for a technique are
called indirectly. Specifically, malware authors can use the
LoadLibrary API to load a module into the address space of
their running process (by providing the module’s path as the
argument). Then, they can use the GetProcAddress API to
fetch the address of the desired function from the export
section of the loaded module (by providing the module
handle and function name as arguments). Together, these
API calls can be used to extract the address of the desired
API call defined in the export table of the target module.
As the module and API names are passed as arguments to
these API calls, our API sequence extraction technique does
not find these invocations in memory and thus fails to take
capture these API calls. Consequently, our system fails to
detect such MITRE ATT&CK technique implementations.

Table 4: Analysis of false negatives for API-call-based tech-
niques.

H TechID | #Examined FN ‘ #Indirect ‘ #Training H
T1070 10 4 6
T1083 10 2 8
T1082 10 0 10
T1071 10 0 10
T1543 10 8 2
T1497 10 0 10
TI1112 10 0 10
T1057 10 1 9
T1055 10 3 7
T1547 10 0 10
T1056 10 4 6
T1033 10 1 9
T1095 10 2 8
TI1518 10 0 10
T1134 10 6 4
T1049 10 0 10
T1486 5 0 5

[Al] 165 [35 [130]

Insufficient Training Data. Our model detects the tech-
niques in a sample by using its API calls. However, not all
17 API-call-based techniques are directly implemented by
the sample. For example, to modify the registry, the sample
may use RegOpenKey, RegCreateKey, and RegSetValue API
calls, or it may add a command to the Task Scheduler to
execute reg.exe or regedit.exe. In the latter case, our model
cannot find the behavior in the sample itself, although it
could detect the API calls for adding a command to the
Task Scheduler. However, our training data did not have
enough instances of such activities. We found that this was
the case for the 130 instances in our dataset, where the
samples used indirect methods to implement the MITRE
ATT&CK techniques. Some MITRE ATT&CK techniques
may have multiple sub-techniques that implement them in
different ways. For example, MITRE lists 14 sub-techniques
for T1547: Boot or Logon Autostart Execution on Windows.
Our model may not learn the patterns for all sub-techniques,
especially if our training set lacks samples that implement
them.

4.6. Attention Analysis

As we explained in Section [3.2] we incorporate attention
networks into the design of our system — at the API call
sequence level — to address the general lack of explainability
that inherently exists with neural networks. In this section,
we analyze the attention results for each technique to un-
derstand if our classifier captures meaningful sequences of
API call that are directly responsible for specific MITRE
ATT&CK techniques. For this analysis, we randomly select
five samples from the true positives for each of the 17 API
call-based techniques. To analyze the attention weights for

each sample, we look at the top 10 sequences with the
highest weights.

We found that our system worked very well for 12 out
of 17 techniques, where the attention weights are assigned
to the sequences that directly implement the corresponding
behaviors in 58 out of 60 cases. These techniques are 71071,
T1055,T1497, T1112, T1486, T1082, T1070, T1083, T1134,
T1543, T1056, and T1095.

For example, consider the implementation of technique
T1071 (Application Layer Protocol), which is a technique
used by adversaries to perform communication and file
transfers using the application layer protocol. We found that
our system assigns high weights to the sequence consisting
of the API calls socket, connect, InternetReadFile, Internet-
ConnectA, WinHttpCloseHandle, InternetOpenA, HttpOpen-
RequestW, and InternetCloseHandle. These APIs are a typ-
ical way in which an attacker would communicate using the
application layer protocol. As another example, technique
T1082 (System Information Discovery) is reported when a
process attempts to get detailed information about the oper-
ating system and the underlying hardware. We found that for
detecting this technique, our system gives high weights to
APIs such as GetVersion, GetVersionExA, GetVolumelnfor-
mation, GetLogicalProcessorInformation, and GetVolumeln-
formationA. Again, these APIs are the ones that one would
expect to see for this technique.

We acknowledge that for the remaining five techniques:
Ti1547, T1057, T1033, TI518, and TI1049 the attention
weights are not always directly correlated with the tech-
nique. However, we note that this does not necessarily
mean that our system fails to capture the true signal of
the technique. It is possible that there are more relevant
sequences that have lower weights but are still sufficient
for the classification. Moreover, the attention weights may
reflect some patterns of API sequence that are specific
to certain malware families, which can also be useful for
malware analysis.

4.7. Further Analysis

In the appendix, we present the results of additional
experiments to further assess the performance and robust-
ness of DEEPCAPA. In Appendix [A] we measure the
degradation of our model over time by performing a tem-
poral concept drift analysis. In Appendix [B] we evaluate the
effectiveness of the CFG merging step. Then we compare
DEEPCAPA with more basic machine-learning-based ap-
proaches that have been effective on related tasks, such as
malware detection, in Appendix [C| Finally, we conduct an
ablation study of our neural network model in Appendix [D]
and show how each component is necessary and beneficial
for achieving the best results, as well as how it outperforms
simpler baseline approaches.

5. Security Discussion

In Section f.5] we detailed potential sources of false
negatives. Building on that analysis, we examine malware

evasion techniques and discuss DEEPCAPA’s resilience
against such evasion attempts.

DEEPCAPA’s design incorporates several features that
mitigate the effects of typical malware evasion techniques.
Anti-sandbox techniques, for instance, are largely ineffective
against our approach, as DEEPCAPA operates on full
memory snapshots, enabling the analysis of potentially un-
executed (dormant) code. This ability allows us to overcome
the limitations often associated with pure dynamic analysis
approaches. Similarly, DEEPCAPA demonstrates resilience
against static code obfuscation. Our graph reduction phase
(see Section [3.T) removes non-API call instructions from
the CFG, thereby limiting the impact of code obfuscation
techniques on our analysis. Dynamic code generation, code-
packing, and runtime API resolution also have reduced
effects on our system. As detailed in Section 3.1, we can
capture dynamically invoked API calls by utilizing multiple
snapshots and CFG merging, addressing a key limitation
of purely static analysis techniques. While DEEPCAPA
effectively counters several evasion methods, we acknowl-
edge that certain techniques may still pose challenges to our
analysis. The following paragraphs discuss these techniques,
their potential impact, and our proposed countermeasures.
Indirect Jumps. Our system relies on memory snapshots —
taken during execution at significant events — to extract code
from a malware process. This code is then disassembled
and converted into CFGs. After that, we use probabilistic
random walks to extract sequences of API calls. To bypass
our analysis, an adversary could attempt to hinder CFG
construction and/or obfuscate API calls. Our system pro-
cesses memory snapshots to extract call (target) addresses.
The current implementation expects jumps and calls to go
to valid addresses. Thus, adversaries could potentially evade
our analysis by implementing indirect jumps and resolving
the correct address of the control transfer instruction at run-
time. For example, as we discussed in Section @ our
system has failed to detect certain techniques that leverage
indirect API calls (although we note that the number of false
negatives due to this limitation is small).

One way to address the issue of indirect control flow
transfers is to perform a deeper static analysis. In particular,
we could perform data-flow analysis on memory snapshots
and look at the arguments of indirect jumps or parameters
of specific API calls to handle indirect calls. Alternatively,
DEEPCAPA could leverage additional run-time informa-
tion from the sandbox. In particular, we could dynamically
record all jump targets and invocations of API functions,
together with their source addresses. While this would only
apply to function calls that are actually observed during
sandbox execution, our analysis would be able to record and
leverage API call information regardless of how the call site
is obfuscated (and whether the call is direct or indirect).

We note that indirect jumps are also a potential limitation
of related work such as Forecast, which utilizes symbolic ex-
ecution and data-flow analysis to resolve API call addresses.
Forecast may fail to resolve the corresponding API address
if an API call is indirectly invoked and the library is not
already loaded in memory.

Adversarial samples and API Calls.

DEEPCAPA relies on encoding input samples into lists
of API call sequences, which are then processed by a neural
network. While neural networks (and, in general, machine
learning models) are effective for malware detection, they
are also vulnerable to adversarial examples [40]-[43]], inputs
that are manipulated to avoid detection by a targeted model.

In addition, an adversary might inject “bogus” API calls
into legitimate sequences, reordering related API calls, or
mixing unrelated calls. Such manipulations can potentially
alter the control-flow graph (CFG) by introducing fake
nodes (new APIs) or edges (new call links). These changes
could impact the effectiveness of our random walk-based
sequence extraction, potentially leading to a disproportionate
number of misleading sequences. However, it’s important
to note that excessive manipulation of the API call structure
presents a double-edged sword for the attacker. While it may
complicate our analysis, it also risks creating unusual CFG
patterns that could themselves become indicators of mali-
cious behavior. This inherent trade-off likely constrains the
extent to which an adversary can alter the API call structure
without inadvertently increasing the sample’s detectability.

However, the impact of adversarial samples and API se-
quences on DEEPCAPA can be significant. They may lead
to the misclassification of malicious behaviors or inefficient
exploration of the CFG during analysis. To mitigate these
risks, we propose incorporating adversarial training tech-
niques [44] into DEEPCAPA. By augmenting our training
set with adversarial examples, we can improve the system’s
robustness against such evasion attempts. Additionally, fur-
ther research into adaptive CFG exploration strategies and
sequence filtering mechanisms could enhance our system’s
resilience to adversarial manipulations.

Challenges in CFG Generation. Our system is designed to
extract Control Flow Graphs (CFG) from memory snapshots
using a disassembler, specifically IDA Pro. While our ap-
proach is robust, it is not without its challenges. Adversaries
can implement techniques that make it difficult for IDA
Pro to generate an accurate CFG. One such challenge is
the use of exception-handling mechanisms by malware to
disrupt the normal flow of execution. This can make it
difficult for IDA Pro to generate an accurate CFG as it
may not fully understand or be able to predict the behavior
of these exceptions. Another significant challenge is the
use of polymorphic code by malware. Polymorphic code
can change its own instructions while keeping the original
algorithm intact, allowing malware to evade signature-based
detection. This can pose a significant challenge for IDA Pro,
as the changing instructions can prevent it from generating
a correct and complete CFG.

Of course, malware analysis remains an arms race, and
attackers will continue to introduce techniques that make
analysis harder. However, our evaluation demonstrates that
our current approach works very well in practice, and we
also have room to improve the robustness of our system.

6. Related Work

The field of malware analysis is a rapidly evolving
field, with researchers continually proposing novel malware
detection or classification methods to keep up with the ever-
changing malware landscape [11]], [12f, [14]], [45]-[47].
Despite this progress, the development of post-detection
systems that can identify specific malicious capabilities in
a given malware program has received less attention. Such
systems can significantly aid overworked malware analysts
by providing an overview of relevant malware behaviors.
Our system targets this post-detection gap by identifying
potentially malicious behaviors in the form of techniques
defined by the MITRE ATT&CK framework.

In this section, we discuss the related work in this area,
categorizing them into two main groups: systems for capa-
bility identification and techniques for API extraction. We
highlight the strengths and limitations of existing approaches
within these categories.

Systems for Capability Identification. CAPA [20], devel-
oped by researchers at Mandiant, is a post-detection system
that performs static analysis on malicious executable files
using manually crafted heuristics to detect their capabilities
in the form of MITRE ATT&CK techniques. However,
CAPA’s approach has limitations, such as its inability to
detect capabilities when the malware is packed or its poten-
tial lack of generalization due to narrow heuristics. Inspector
Gadget [48] isolates specific malware behaviors (techniques)
by extracting standalone slices of code using dynamic taint-
tracking. These slices are then used to build static models
that can identify similar functionality in other programs.
However, the models generated by Inspector Gadget are
highly specific and require a close match for detection. Fore-
cast [[19] is a post-detection framework that processes the
memory image of a malicious process to predict capabilities
that the malware can execute. It uses a probabilistic model to
extract API calls along different execution paths and applies
manually crafted heuristics to determine if a certain capa-
bility is present in a sample. In contrast to CAPA, Inspector
Gadget, and Forecast, our system employs neural networks
to automatically learn the features (API call sequences) that
characterize different techniques. This makes our approach
more general and faster at adapting to new capabilities.
SODA [49]], MALAF [50]], and APILI [51] are systems
that map dynamic API call traces to malicious behaviors.
However, these tools’ dependency on dynamic API call
traces to detect behaviors makes them prone to adversarial
anti-analysis techniques, thus hindering their effectiveness.
On the other hand, our system combines static and dynamic
information from memory snapshots, enabling it to process
both executed and dormant code even when the malware
abruptly terminates.

Techniques for API Extraction. Several projects have
used API call sequences to distinguish between malicious
and benign activity [21]]-[24]. Previous work attempted to
extract API call sequences using both static and dynamic
analysis. The static extraction of API call sequences involves
analyzing the assembly instructions of a binary through

static analysis and generating a CFG of the program [52]-
[55)]. These approaches suffer from the limitation of per-
forming static analysis on malware binaries [56]—[58]]. They
cannot generate a CFG for packed code, or for code that
is generated at runtime and executed in virtual memory.
By analyzing multiple process snapshots, DEEPCAPA can
generate a CFG for code even if the malware sample was
initially packed or if the code was injected into memory at
runtime.

Dynamic extraction typically involves executing the ma-
licious code in a sandbox and recording the API call
traces [[7]], [[16], [59]-[63]]. These API call traces are then
used as features for a machine-learning model. However, this
approach can only extract API call sequences for executed
code, failing to extract dormant sequences. DEEPCAPA
overcomes this limitation by analyzing the entire code from
process snapshots, allowing it to extract API call sequences
from both executed and dormant code.

7. Conclusions

In this work, we propose DEEPCAPA, an automated
system that detects high-level, potentially malicious be-
haviors in the form of MITRE ATT&CK techniques. Our
system performs probabilistic random walks on the CFG
of multiple memory snapshots of a program as a way to
perform robust extraction of a collection of API sequences.
These API sequences are our way to model the behaviors
of a program. We then leverage deep neural networks and
apply them to these API call sequences.

Our results show that DEEPCAPA delivers very
promising precision and recall of 95.80% and 93.76%,
respectively, across 29 different MITRE techniques. Hav-
ing compared our system to previous work, we show that
our approach to automatically learning behaviors is more
general and leads to fewer false negatives.

Acknowledgment

We would like to thank the anonymous reviewers for
their valuable feedback. This material is partially based on
work supported by the Office of Naval Research under award
number NO00014-23-1-2387 and by the National Science
Foundation under grant no. 2229876, and is also supported
in part by funds provided by the National Science Founda-
tion, by the Department of Homeland Security, and by IBM.
The opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the ONR, NSF, or
any of their federal agency or industry partners.

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

AV-TEST, “File statistics,” |https://www.av-test.org/en/statistics/
malware/, (Accessed: 2022-7-19).

H. Yin, D. Song, M. Egele ef al., “Panorama: capturing system-wide
information flow for malware detection and analysis,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security, 2007, pp. 116-127.

C. Kolbitsch, P. M. Comparetti, C. Kruegel et al., “Effective and
efficient malware detection at the end host.” in USENIX security
symposium, vol. 4, no. 1, 2009, pp. 351-366.

U. Bayer, P. M. Comparetti, C. Hlauschek et al., “Scalable, behavior-
based malware clustering.” in NDSS, vol. 9. Citeseer, 2009, pp.
8-11.

A. Kharaz, S. Arshad, C. Mulliner er al., “{UNVEIL}: A large-scale,
automated approach to detecting ransomware,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 757-772.

A.-D. Schmidt, R. Bye, H.-G. Schmidt et al., “Static analysis of
executables for collaborative malware detection on android,” in 2009
IEEE International Conference on Communications. 1EEE, 2009,
pp. 1-5.

C. Li and J. Zheng, “Api call-based malware classification using

recurrent neural networks,” Journal of Cyber Security and Mobility,
pp. 617-640, 2021.

G. E. Dahl, J. W. Stokes, L. Deng et al., “Large-scale malware
classification using random projections and neural networks,” in 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing. 1EEE, 2013, pp. 3422-3426.

B. Marais, T. Quertier, and C. Chesneau, “Malware analysis with arti-
ficial intelligence and a particular attention on results interpretability,”
in International Symposium on Distributed Computing and Artificial
Intelligence. Springer, 2021, pp. 43-55.

S. Jeon and J. Moon, “Malware-detection method with a convolu-
tional recurrent neural network using opcode sequences,” Information
Sciences, vol. 535, pp. 1-15, 2020.

E. Raff, J. Barker, J. Sylvester et al., “Malware detection by eating a
whole exe,” in Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

J. Saxe and K. Berlin, “Deep neural network based malware de-
tection using two dimensional binary program features,” in 2015
10th International Conference on Malicious and Unwanted Software
(MALWARE). 1EEE, 2015, pp. 11-20.

M. Kalash, M. Rochan, N. Mohammed et al., “Malware classifi-
cation with deep convolutional neural networks,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 2018, pp. 1-5.

C. Jindal, C. Salls, H. Aghakhani et al., “Neurlux: dynamic malware
analysis without feature engineering,” in Proceedings of the 35th
Annual Computer Security Applications Conference, 2019, pp. 444—
455.

Y. Zhong, H. Yamaki, and H. Takakura, “A malware classification
method based on similarity of function structure,” in 2012 IEEE/IPSJ
12th International Symposium on Applications and the Internet.
IEEE, 2012, pp. 256-261.

I. Kwon and E. G. Im, “Extracting the representative api call patterns
of malware families using recurrent neural network,” in Proceedings
of the International Conference on Research in Adaptive and Con-
vergent Systems, 2017, pp. 202-207.

J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an ensemble
method based on deep neural network,” Security and Communication
Networks, vol. 2018, 2018.

S. Ni, Q. Qian, and R. Zhang, “Malware identification using visu-
alization images and deep learning,” Computers & Security, vol. 77,
pp. 871-885, 2018.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

O. Alrawi, M. Ike, M. Pruett et al., “Forecasting malware capabil-
ities from cyber attack memory images,” in 30th USENIX Security
Symposium, 2021.

“CAPA: Detecting malware capabilities,”
mandiant/capa/, 2020, (Accessed: 2022-7-19).

S. Forrest, S. Hofmeyr, A. Somayaji et al., “A sense of self for unix
processes,” in Proceedings 1996 IEEE Symposium on Security and
Privacy, 1996, pp. 120-128.

D. Mutz, W. Robertson, G. Vigna et al., “Exploiting Execution Con-
text for the Detection of Anomalous System Calls,” in Proceedings
of the International Symposium on Recent Advances in Intrusion
Detection (RAID), Gold Coast, Australia, September 2007, pp. 1-20.

R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detec-
tion of malicious processes,” in 2015 IEEE International Conference
on Software Quality, Reliability and Security, 2015, pp. 119-124.

https://github.com/

M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications
of malicious behavior,” in Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC-FSE *07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 5-14. [Online]. Available:
https://doi.org/10.1145/1287624.1287628

B. E. Strom, A. Applebaum, D. P. Miller et al., “Mitre att&ck: Design
and philosophy,” Technical report, 2018.

H. Rays, “Hex rays official website,” https://hex-rays.com/, (Ac-
cessed: 2024-5-8).

N. M. Hai, M. Ogawa, and Q. T. Tho, “Obfuscation code localization
based on cfg generation of malware,” in International symposium on
foundations and practice of security. Springer, 2015, pp. 229-247.

M. H. Nguyen, D. Le Nguyen, X. M. Nguyen et al., “Auto-detection
of sophisticated malware using lazy-binding control flow graph and
deep learning,” Computers & Security, vol. 76, pp. 128-155, 2018.

A. Radford, J. Wu, R. Child et al., “Language models are unsuper-
vised multitask learners,” OpenAl blog, vol. 1, no. 8, p. 9, 2019.

J. Devlin, M.-W. Chang, K. Lee et al., “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

Y. Liu, M. Ott, N. Goyal et al., “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

M. Lewis, Y. Liu, N. Goyal et al., “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” arXiv preprint arXiv:1910.13461, 2019.

A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky et al., “Dropout: a simple
way to prevent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

Virustotal, “Virustotal website,”
home/upload/, (Accessed: 2024-5-8).

S. Sebastidn and J. Caballero, “Avclass2: Massive malware tag ex-
traction from av labels,” in Annual Computer Security Applications
Conference, 2020, pp. 42-53.

X. Wu, W. Guo, J. Yan et al., “From grim reality to practical solution:
Malware classification in real-world noise,” in 2023 IEEE Symposium
on Security and Privacy (SP). 1EEE Computer Society, 2023, pp.
2602-2619.

NetworkX, “Graph package,” https://networkx.org/, (Accessed: 2023-
5-1).

Pytorch, “Tensor library,” https://pytorch.org/, (Accessed: 2023-12-1).
I. Rosenberg, A. Shabtai, L. Rokach et al., “Generic black-box end-to-
end attack against state of the art api call based malware classifiers,”

in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2018, pp. 490-510.

https://www.virustotal.com/gui/

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://github.com/mandiant/capa/
https://github.com/mandiant/capa/
https://doi.org/10.1145/1287624.1287628
https://hex-rays.com/
https://www.virustotal.com/gui/home/upload/
https://www.virustotal.com/gui/home/upload/
https://networkx.org/
https://pytorch.org/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]1

[55]

[56]

[571

[58]

(591

K. Grosse, N. Papernot, P. Manoharan et al., “Adversarial examples
for malware detection,” in European symposium on research in com-
puter security. Springer, 2017, pp. 62-79.

F. Fadadu, A. Handa, N. Kumar et al., “Evading api call sequence
based malware classifiers,” in International Conference on Informa-
tion and Communications Security. Springer, 2019, pp. 18-33.

W. Hu and Y. Tan, “Black-box attacks against rnn based malware
detection algorithms,” in Workshops at the Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

A. Madry, A. Makelov, L. Schmidt et al, “Towards deep
learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature
generation and detection of malware families,” in Australasian Con-
ference on Information Security and Privacy. Springer, 2008, pp.
336-349.

H. Zhang, W. Zhang, Z. Lv et al., “Maldc: a depth detection method
for malware based on behavior chains,” World Wide Web, vol. 23,
no. 2, pp. 991-1010, 2020.

W. Zhong and F. Gu, “A multi-level deep learning system for malware
detection,” Expert Systems with Applications, vol. 133, pp. 151-162,
2019.

C. Kolbitsch, T. Holz, C. Kruegel et al., “Inspector gadget: Automated
extraction of proprietary gadgets from malware binaries,” in 2010
IEEE Symposium on Security and Privacy. 1EEE, 2010, pp. 29-44.

M. S. L. Sajid, J. Wei, B. Abdeen et al., “Soda: A system for cyber
deception orchestration and automation,” in Proceedings of the 37th
Annual Computer Security Applications Conference, 2021, pp. 675—
689.

C. Liu, B. Li, J. Zhao et al., “Malaf: Malware attack foretelling from
run-time behavior graph sequence,” IEEE Transactions on Depend-
able and Secure Computing, 2023.

G.-W. Wong, Y.-T. Huang, Y.-R. Guo et al., “Attention-based api
locating for malware techniques,” IEEE Transactions on Information
Forensics and Security, 2023.

Y. Hua, Y. Du, and D. He, “Classifying packed malware represented
as control flow graphs using deep graph convolutional neural net-
work,” in 2020 International Conference on Computer Engineering
and Application (ICCEA). 1EEE, 2020, pp. 254-258.

J. Yan, G. Yan, and D. Jin, “Classifying malware represented as con-
trol flow graphs using deep graph convolutional neural network,” in
2019 49th annual IEEE/IFIP international conference on dependable
systems and networks (DSN). 1EEE, 2019, pp. 52-63.

M. K. Shankarapani, S. Ramamoorthy, R. S. Movva et al., “Malware
detection using assembly and api call sequences,” Journal in computer
virology, vol. 7, no. 2, pp. 107-119, 2011.

O. P. Samantray, S. N. Tripathy, and S. K. Das, “A data mining based
malware detection model using distinct api call sequences,” Interna-
tional Journal of Innovative Technology and Exploring Engineering
(JITEE), vol. 8, no. 7, 2019.

H. Aghakhani, F. Gritti, F. Mecca et al, “When malware is
packin’heat; limits of machine learning classifiers based on static
analysis features,” in Network and Distributed Systems Security
(NDSS) Symposium 2020, 2020.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007). 1EEE, 2007, pp. 421-430.

R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability
in malware collection and analysis using statistical classification of
executables,” in 2008 Annual Computer Security Applications Con-
ference (ACSAC). IEEE, 2008, pp. 301-310.

B. Kolosnjaji, A. Zarras, G. Webster et al., “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer, 2016, pp. 137-149.

[60] Z. Salehi, A. Sami, and M. Ghiasi, “Maar: Robust features to detect
malicious activity based on api calls, their arguments and return
values,” Engineering Applications of Artificial Intelligence, vol. 59,
pp- 93-102, 2017.

[61] E. Amer and I. Zelinka, “A dynamic windows malware detection

and prediction method based on contextual understanding of api call
sequence,” Computers & Security, vol. 92, p. 101760, 2020.

[62] M. Tang and Q. Qian, “Dynamic api call sequence visualisation for

malware classification,” IET Information Security, vol. 13, no. 4, pp.
367-377, 2019.

[63] B. Saha, N. Rani, and S. K. Shukla, “Malxcap: A method for malware

capability extraction,” in International Conference on Information
Security Practice and Experience. Springer, 2023, pp. 230-249.

[64] R. Jordaney, K. Sharad, S. K. Dash et al., “Transcend: Detecting

concept drift in malware classification models,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 625-642.

Appendix A.
Temporal Concept Drift

Concept drift is a well-known problem where the rela-
tionship between the input data and the output of a predic-
tive model changes (and diverges). In particular, malware
analysis tools are known to suffer from temporal concept
drift, where performance degrades over time, especially
as adversaries adapt their implementation to evade detec-
tion [[64]. Therefore, to keep good performance, it is nec-
essary to evaluate and re-train models regularly over time.
As mentioned in Section .1} the samples for our (original)
training and test datasets were collected in the wild between
March 2020 and June 2022. We then obtained more recent
samples from the security vendor to carry out a temporal
concept drift evaluation. More precisely, we performed this
evaluation by testing our model on 3,634 samples, 3,044
samples, and 904 samples found in the wild during July,
August, and September 2022, respectively. We first test the
performance of DEEPCAPA on the samples for each of
these months and observed that our system achieved an
accuracy of 84.00%, 86.01%, and 81.34% for the July,
August, and September batch, respectively. We then added
the samples from July 2022 to our training set and re-
tested the newly trained model on samples from August
and September 2022. We found that the accuracy for both
August and September increased to 88.38% and 85.40%.
We then repeated this experiment by adding samples from
July and August 2022 to the training set, rebuilt the model,
and tested it on the samples from September 2022. The
accuracy further increased to 87.71%. Table [5] summarizes
the accuracy results for the different experiments.

As expected, our results show the performance (accu-
racy) improves when we can train on samples that are
more recent and “closer” to the time when the test samples
are collected. Fortunately, this is a reasonable operational
model. That is, in practice, it would be no problem to retrain
the model once a month (or even weekly) to take advantage
of the most recent data. Moreover, the accuracy does not
suddenly collapse; rather, it degrades gradually by one or
two percentage points per month.

Table 5: Temporal Concept Drift: We tested DEEPCAPA
on samples collected in July, August, and September 2022.
We then added July’s dataset to our training set and tested
our model on August and September’s data. Finally, we
repeated this process by adding July and August samples to
the training set and tested the model on September’s data.
We found that DEEPCAPA’s accuracy indeed gets better
as we increase the samples in the training set.

Training Data July 22 | August °22 | Sept 22
March "20 - June 22 | 84.00% 86.01% 81.34%
March 20 - July *22 - 88.38% 85.40%
March ’20 - Aug ’22 - - 87.71%

Table 6: Effectiveness of CFG Merging Step.

Snapshot F1-score | API-call-location pairs
Single Snapshot 82.72% 368
Multiple Snapshots 94.74% 517

Appendix B.
Effectiveness of CFG Merging

We employ the CFG Merging technique during the
process of API call extraction (Section3.I). This technique
enables us to reconstruct the program’s CFG from multiple
snapshots, which is a critical step for resolving indirect calls
and obtaining a comprehensive and accurate representation
of the program. To illustrate the significance of the CFG
merging step, we conducted an experiment where we ex-
tracted API calls from the initial memory snapshots of the
samples in the testing set. We then compared the F1 score
and the number of unique API-call location pairs with and
without the use of the CFG merging step. The results of this
experiment are presented in Table [6]

When considering only the first snapshot, we observed
an average of 368 unique API-call-location pairs. However,
this number increased to an average of 517 when multiple
memory snapshots were considered. To evaluate the impact
of this reduction in API calls on performance, we conducted
capability detection using only the API calls from the initial
snapshot, which resulted in an F1 score of 82.72%.

In contrast, DEEPCAPA, achieved an F1 score of
94.74% when it utilized API calls from multiple snapshots.
This comparison proves the importance of the CFG merging
step in our API call extraction process.

Appendix C.
Comparison With N-Gram-Based Classifiers

As we describe in Section [3] our system operates on
sequences of API calls. This fact might suggest that sim-
pler classification approaches, for example, those that are
based on n-grams extracted over API calls, might achieve
comparable results to our neural network. In this section,
we perform a comparison to validate if our more complex
design choices are actually necessary and beneficial.

For our experiment, we first compute TF-IDF features
extracted from 2-grams, 4-grams, and 6-grams over API
call sequences. We use these features to train traditional
types of machine learning classifiers; in particular, SVMs
and random forests. When building individual classifiers per
each technique, for each type of classifier, we performed
an independent grid search over the hyper-parameters, and
we present the best results here. We train and evaluate
each classifier with the same training and test sets that are
used for training and evaluating our system (as described
in Section [). Note that the training and test split varies
per each technique (as we always use a 50%-50% balanced
training set).

Our results show that the random forest classifier with
2-grams achieved aggregated precision and recall values of
92.80% and 89.52%, respectively, where as 4-grams features
led to aggregated precision and recall values of 91.30% and
87.00%, respectively. For 6-grams, we observed precision
and recall values of 90.63% and 85.30%, respectively.

The results for the SVM classifier show aggregated pre-
cision and recall values of 93.10% and 90.50%, respectively,
when 2-gram features are used. For 4-grams, precision and
recall values were 92.70% and 88.12%, respectively, and, for
6-grams, we observed precision and recall values of 91.56
% and 86.58%, respectivelyﬂ

In general, our results show that DEEPCAPA signifi-
cantly outperforms both SVM and random forest classifiers
that rely on n-gram features, in particular, when looking at
the precision results. The overview of the results for this
experiment are summarized in Table [7]

Table 7: Comparison between shallow machine learning
techniques and the complete DEEPCAPA system. The re-
sults show that the DEEPCAPA outperforms the simpler
approaches.

Model Precision (in %) | Recall (in %)
RF-2grams 92.80 89.52
RF-4grams 91.30 87.00
RF-6grams 90.63 85.30
SVM-2grams | 93.10 90.50
SVM-4grams | 92.70 88.12
SVM-6grams | 91.56 86.58
| DEEPCAPA | 95.80% | 93.76%

Appendix D.
Ablation Study

We performed an ablation study to verify two claims
about our proposed method DEEPCAPA. First, pretrain-
ing on a large corpus of unlabeled API call sequences
improves the performance of the classifiers for different
MITRE ATT&CK techniques. Second, using a convolutional

3. Overall, we found selecting only the top 85% n-grams (with the
highest document frequency) results into a better performance.

neural network (CNN) layer in the fine-tuning stage helps to
capture shift-invariant features from the API call sequences.
To test these claims, we compare our two-stage training
procedure with two baseline models that use different train-
ing strategies, while using the same training, validation, and
testing sets as used for the fine-tuning stage of DEEPCAPA.
The results of this comparison are presented in Table [§]

Table 8: Ablation study results for different training strate-
gies of DEEPCAPA. The results demonstrate that our two-
stage training procedure with CNN is effective and neces-
sary for DEEPCAPA.

Model Precision (in %) | Recall (in %)
Without Pretraining 90.50 91.83
DEEPCAPA with DNN | 85.58 83.61

[DEEPCAPA [95.80% [93.76 %]

For the first baseline, we trained a neural network
classifier (both the feature extractor and linear networks)
from scratch for each technique, without using any pretrain-
ing weights. We use the same neural network architecture
as DEEPCAPA and train the model for 30 epochs for
each MITRE ATT&CK technique. This approach achieves
90.50% precision and 91.83% recall, which are lower than
DEEPCAPA’s results. This indicates that our pretraining
stage is effective for learning generalizable features that can
be leveraged for the fine-tuning tasks.

For the second baseline, we follow the same two-stage
training procedure as DEEPCAPA, but we replace the CNN
layer with a dense neural network (DNN) layer in the fine-
tuning stage. We set the input dimension of the DNN layer to
350 x 768 (the same as the output dimension of the attention
layer) and the output dimension to 64. We fine-tuned this
model for 20 epochs for each MITRE ATT&CK technique.
In our evaluation, DNN baseline performed considerably
worse than DEEPCAPA, achieving 85.58% precision and
83.61% recall. More surprisingly, the DNN baseline also
performs worse than the No-Pretrain baseline, despite being
initialized with pretraining weights. Thus implying that the
CNN layer is indeed effective in capturing shift-invariant
features and enhancing the performance of the classifiers.

Appendix E.
CFG Exploration Strategy

In this section, we provide a detailed explanation of our
CFG exploration strategy. We perform probabilistic random
walks over the CFG to extract fixed-length sequences of
API calls (in the following paragraphs, the length of each
sequence is denoted by A). Probabilistic walks over graphs
have previously been used to extract dominant flows in
graphs for link prediction and graph classification tasks. We
use this approach to traverse the CFG to extract sequences
of APIs while giving higher weight to the blocks having a
larger number of function/API call instructions.

Prepare probabilistic random walks. The probabilistic ap-
proach is based on Markov chains, which describe the

probability of transitioning from one state to another using
a transition probability matrix. We compute the transition
matrix once at the beginning of the analysis, and it is used
to select the next block while exploring the CFG.

To calculate the transition matrix for a CFG, we first
compute the weight of each block B; in the graph, denoted
by |B;|. This is simply the total number of function/API call
instructions in that block. Then, we calculate the adjacency
matrix. The adjacency matrix of a CFG with n blocks, which
we assume to be ordered from B; to B, is defined as anxn
matrix A, in which:

{Aij =1 if there exists a path from B; to B}, @)

A;; =0 otherwise.

We use A to calculate the weight matrix W of the CFG. W
is also a n X n matrix, in which:

{W,’j:AU—I—Bj if A,‘jZI 3)

W;; =0 otherwise.

We then use W and A to calculate the transition matrix
P of the CFG, which is a n x n matrix that denotes the
probability of transitioning from any block in the CFG to
any other block:

Yo Wy

Note that Y7, ;; is one if and only if there exists a forward
edge from B;, otherwise it is zero.

P;; = Vi, j. 4)

Algorithm 1: CFG Exploration Strategy.
1 Function Walk (G, B, P, CallList, L, A):

Input : G: CFG of the function to explore, B: Block within the
CFG to explore, P: Transition matrix of CFG, CallList:
List of call instructions in B, L: Current sequence of
API calls, A: Target length of the API call sequence
Output : Sequence L of API calls
2 while Len(L) < A do
3 foreach Inst in CallList do
4 if Len(L)>=A then
5 | break
6 end
7 if Inst is a call to function f then
8 Gn = GetCFG(f)
9 Bn = GetEntryBlock(f)
10 Pn = GetTransitionMatrix(Gn)
11 CallList = GetCalls(Gn, B)
12 Walk (Gn, Bn,Pn, CallList, L, A)
13 end
14 if Inst is an invocation of API a then
15 | L.append(a)
16 end
17 end
18 B = GetNextBlock(PP, B)
19 if B == NULL then
20 | break
21 end
22 else
23 | CallList = GetCalls(P, B)
24 end
25 end

Perform a probabilistic random walk. Algorithm |1| explains
our probabilistic random walk strategy. For each walk, we
pick the CFG G of the most unexplored function (initially,

Table 9: Performance of DEEPCAPA. The first set of rows represent API-call-based techniques. The second set of rows
are for generic behavior techniques. Note that one malware sample can present multiple techniques.

| | Tech. ID | Tech. Name # Test Samples | #TP | #TN | #FP | #FN | Precision (%) | Recall (%) | |
T1070 Indicator Removal 2652 1801 805 13 33 99.28 98.20
T1083 File and Directory Discovery 2652 2266 347 4 35 99.82 98.48
T1082 System Information Discovery 2652 2335 281 1 35 99.96 98.52
T1071 Standard Application Layer Protocol 2652 1366 1099 89 98 93.88 93.31
T1543 Create or Modify System Process 2652 1810 821 0 21 100.00 98.85
T1497 Virtualization/Sandbox Evasion 2652 1403 1083 84 82 94.35 94.48
T1112 Modify Registry 2590 1268 1295 0 27 100.00 97.92
T1057 Process Discovery 2224 1031 1015 97 81 91.40 92.72
T1055 Process Injection 2070 947 984 51 88 94.89 91.50
T1547 Boot or Logon Autostart Execution 2036 925 917 101 93 90.16 90.86
T1056 Input Capture 1852 895 926 0 31 100.00 96.65
T1033 System Owner/User Discovery 1774 821 836 51 66 94.15 92.56
T1095 Non-Application Layer Protocol 1288 616 644 0 28 100.00 95.65
T1518 Software Discovery 882 412 431 10 29 97.63 93.42
T1134 Access Token Manipulation 840 405 420 0 15 100.00 96.43
T1049 System Network Connections Discovery 336 152 157 11 16 93.25 90.48
T1486 Data Encrypted for Impact 444 217 222 0 5 100.00 97.75
[l - | API-Call-Based Set 32,287 | 18,670 | 12283 | 512 | 822 | 97.33% [95.78% [
T1036 Masquerading 2652 1455 715 221 261 86.81 84.79
T1027 Obfuscated Files or Information 1084 456 492 50 86 90.12 84.13
T1562 Impair Defenses 850 370 389 36 55 91.13 87.06
T1564 Hide Artifacts 814 343 407 0 64 100.00 84.28
T1047 Windows Management Instrumentation 614 260 265 42 47 86.09 84.69
T1568 Dynamic Resolution 94 40 37 10 7 80.00 85.11
T1485 Data Destruction 280 112 128 12 28 90.32 80.00
T1053 Scheduled Task / Job 108 44 50 4 10 91.67 81.48
T1014 Rootkit 218 89 89 20 20 81.65 81.65
T1203 Exploitation for Client Execution 108 42 51 3 12 93.33 77.78
T1059 Command and Scripting Interpreter 274 107 104 33 30 76.43 78.10
T1552 Unsecured Credentials 460 195 200 30 35 86.67 84.78
1B | Generic Behavior Set 7556 | 3513 | 2927 | 461 | 655 | 88.40% | 84.29% [
| | - | All | 39,843 | 22,183 | 15,210 | 973 | 1,477 | 95.80% | 93.76 % | |

this pick is random) and use it as an argument when invoking
the function Walk. Other arguments to Walk include a
block B in G as the starting point of the exploration, the
transition matrix P of the CFG, a list CallList, which
consists of the function and API call instructions in B, an
empty list L, which will eventually store the sequence of
APIs, and A, the maximum length of the sequence of API
calls.

During the exploration of each block, we iterate (Line 3)
over the instructions (/nst) in its CallList and check whether
they are (internal) function calls or external API invocations.
If the instruction is a function call, we follow the edge in the
CFG and continue our walk at the first block of the callee
function (Line 7-13). If the instruction is an API invocation,
we append the API name to L (Line 14-16).

After iterating over all instructions in a block, we explore
the next block in the CFG. To randomly select the next
block (in case there are multiple successor nodes), we call
GetNextBlock (Line 18). The GetNextBlock function takes
the current block and the transition matrix PP as arguments.
If the current block B; has at least one successor in the
CFG (that is,):,7:1[?,7 = 1), GetNextBlock returns one of

these blocks by performing a weighted random selection. If
the current block does not have any successor block (that is,
Z;?ZI IP;; = 0), the function simply returns NULL. We keep
exploring all the blocks in G until either the length of L
becomes equal to our maximum sequence length A, or we
explore all blocks in G. In both cases, Walk outputs L.

After exploring G, we check if the length of L is equal
to A. If the length is equal to A, we store L and start a new
walk, picking again the most unexplored function. If the
length of L is less than A, we continue our exploration by
calling Walk, initialized with a function randomly selected
from the set of functions that call G. Basically, we simulate
a function return of G and continue the exploration at one
of its call sites. If no such caller can be found in the CFG,
the random walk stops with a sequence that is shorter than
A. At the end of the CFG Exploration stage, we extract
S sequences of API invocations, where S is the number of
probabilistic random walks performed on the sample’s CFG,
and each sequence consists of A APIs.

	Introduction
	The MITRE ATT&CK Framework
	Methodology
	API Call Sequences Extraction
	Neural Network Architecture
	Training Procedure

	Experimental Evaluation
	Dataset
	General Performance
	Comparison with Existing Work
	False Positive Analysis
	False Negative Analysis
	Attention Analysis
	Further Analysis

	Security Discussion
	Related Work
	Conclusions
	References
	Appendix A: Temporal Concept Drift
	Appendix B: Effectiveness of CFG Merging
	Appendix C: Comparison With N-Gram-Based Classifiers
	Appendix D: Ablation Study
	Appendix E: CFG Exploration Strategy

