
PSan: Towards Hybrid Metadata Scheme for Efficient Pointer Checking

Shengjie Xu, Eric Liu, Wei Huang, Ilya Grishchenko, David Lie
University of Toronto

{shengjie.xu, ec.liu, wh.huang }@mail.utoronto.ca, {ilya.grishchenko, david.lie}@utoronto.ca

Abstract—Memory safety remains at risk for programs written
in unsafe languages like C. Pointer-checking schemes provide
memory safety protection by attaching metadata for each
pointer and checking them before dereference. Previously,
sanitizers maintaining large per-pointer metadata (e.g., pointer
bounds) were stuck with shadow memory for metadata stor-
age, which incurs high overhead. Although fat pointers (i.e.,
instrumenting programs to inline metadata with pointers)
incur less overhead, they introduce incompatibility issues to
the instrumented programs, and are thus not considered by
software-only sanitizers yet.

In this paper, we push the status quo on adopting fat
pointers for software-only pointer checking schemes and eval-
uate the benefit of this approach. We present PSan (short
for “Pointer Sanitizer”), the first memory safety sanitizer
that enables both inline and shadow memory metadata si-
multaneously in the same program. To reduce the overhead
from shadow memory, PSan uses whole-program analysis and
transformation to inline the metadata whenever possible, while
using shadow memory only when necessary for compatibility.
PSan-instrumented programs preserve binary compatibility
with third-party uninstrumented code. In addition, PSan’s
framework decouples metadata management from checking,
facilitating its augmentation with additional checkers.

We evaluate the benefit of metadata inlining and observe
that PSan’s hybrid scheme reduces the runtime and memory
overhead. Specifically, PSan incurs 40% lower overhead than
popular memory checker SoftBoundCETS, which utilizes only
shadow memory. Predictably, using inline metadata has a
higher performance improvement when it can be applied to
the majority of pointers in the program.

Index Terms—Memory Safety, Fat Pointer, Sanitizer.

1. Introduction

Memory safety remains a challenging problem in C
and C++, which lack safeguards against misuse, leading
to vulnerabilities like buffer overflows and use-after-free
that may cause crashes, data breaches, or remote code
execution [1]. Prior work has shown that compiler instru-
mentation is an effective solution for memory safety vul-
nerabilities. Schemes can attach metadata to pointers (e.g.,
pointer bounds for spatial safety) and check the metadata
before pointer dereferences to catch unsafe operations [2],

[3], [4], [5], [6]. Compared to alternative approaches (e.g.,
AddressSanitizer [7] or Control Flow Integrity [8]), these
pointer checking schemes have the strongest error detection
capability because they utilize more information about allo-
cated objects (e.g., size and lifetime) to implement stronger
checks than alternatives. However, they incur high over-
head on the instrumented programs, sometimes exceeding
300%. Therefore, a significant amount of research effort has
been devoted to reducing the overhead of memory checking
schemes while maintaining their error detection capability.

Besides the checks themselves, a major source of over-
head is pointer metadata storage and lookup. Early works
store metadata in shadow memory— logically, an array
indexed by all valid virtual addresses. It preserves object
memory layout at the cost of additional latency for metadata
lookup. Subsequent proposals prefer inlining metadata with
pointers (known as fat pointers) for better performance.
However, this approach currently requires instrumentation of
the entire program, breaking compatibility with third-party
binaries. Consequently, finding an efficient yet compatible
way to maintain pointer metadata remains elusive.

In this paper, we show our findings on incorporating fat
pointers for pointer checking without breaking compatibility.
We present PSan, a pointer-checking sanitizer that utilizes
both shadow memory and fat pointers. PSan achieves this
by demand-driven metadata inlining: it uses whole-program
static analysis to identify pointers applicable for inline meta-
data and widens them into fat pointers, while remaining
pointers that cannot be transformed due to compatibility
constraints use shadow memory. This approach achieves
the performance benefit of fat pointers while preserving the
compatibility of shadow memory.

To facilitate code reuse for future research on pointer
checking, we implemented PSan as a general framework
that supports flexible extension by decoupling checking and
metadata management. The framework encapsulates meta-
data storage, retrieval, and propagation. Checker compo-
nents implement the security policy and optimizations. This
allows us to implement spatial and temporal memory safety
protection [2] with around 600 lines of code each. Both
checks can be enabled simultaneously, providing stronger
error detection.

We evaluate PSan with programs from the Olden bench-
mark and SPEC 2017. Non-surprisingly, the effect of PSan
utilization depends on the proportion of inlined pointers.
Therefore, PSan’s demand-driven metadata inlining effec-

tively reduces the overhead for Olden benchmarks, where
PSan can use inline metadata for almost all pointers in
half of the programs. At the same time, due to the limita-
tions in the employed pointer analysis, the PSan prototype
cannot inline metadata for enough pointers in SPEC 2017
programs, resulting in marginal performance improvements.
Nonetheless, PSan outperforms SoftBoundCETS [9] (a well-
known shadow-memory-based pointer-checking solution) in
our experiments. PSan’s bug-finding ability is also tested on
the Juliet test suite [10], a commonly used tool for evaluating
runtime error detection of checking tools, and PSan catches
all relevant vulnerabilities.

This paper makes the following contributions:
• We present the first pointer-checking scheme that si-

multaneously supports inline metadata (fat pointers)
and shadow memory, preserving binary compatibility
with external code. The scheme’s demand-driven meta-
data inlining algorithm demonstrates performance over-
head improvements for programs that permit metadata
inlining.

• We implement our pointer-checking scheme as a pro-
totype PSan—a software-only sanitizer that provides
spatial and temporal memory safety.

• We evaluate PSan on popular benchmarks and demon-
strate performance improvements when using PSan
on programs that permit metadata inlining. In all our
experiments, PSan outperforms the popular shadow-
memory-only checker SoftBoundCETS, incurring on
average 40% lower overhead.

2. Background: Metadata Inlining using
Points-to Graph

Points-to graph is a representation of pointer analysis
results widely used by static analyzers [11]. MIFP [12]
pioneers the use of a Value-argumented points-to graph
(VAPG, “extended points-to graph” in the original paper)
for widening pointers to fat pointers. PSan repurposes and
improves upon this approach. MIFP [12] is designed to
enhance CHERI’s spatial safety protection. CHERI Con-
centrate [13] proposed fat pointer compression to reduce
overhead, making the bounds inaccurate when object sizes
exceed the platform-dependent threshold (e.g., 4KB for
64-bit systems). MIFP analyzes which pointers may carry
inaccurate bounds, and attaches uncompressed bounds for
vulnerable ones.

MIFP overview. A program shown in Figure 1a contains
an off-by-one error at line 5. The vanilla CHERI compressed
capability pointer will carry an approximated bound that
misses this error. To guarantee the detection of the error,
MIFP replaces the int* capability pointer type with a
struct containing (1) the original capability pointer (still
represented as int* in Figure 1), and (2) an additional
uncompressed bounds as the extra metadata that can detect
the off-by-one error. MIFP starts from line 5 where the
unsafe dereference is made, finds the source of pointer
value that would flow to the dereference site (the malloc

1 int* ptr;
2 int** dptr = &ptr;
3 void foo(void) {
4 ptr = (int*) malloc(sizeof(int)*1025);
5 ptr[1025] = 0; /* out-of-bound */
6 }
7 // int* ptr2;
8 // void setptr(int v) {
9 // dptr = (v>0? &ptr: &ptr2);

10 // }

(a) Code Example

ptr

dptr int**

int*

points-to malloc()

ptr

&ptr[1025]

store

load

(b) Graph Representation

ptr

dptr int**

int*

malloc()

ptr

&ptr[1025]①
②
②②

ptr

dptr int** --> {int*, <md>}*

int* --> {int*, <md>}
③

(c) Algorithm Steps

Figure 1: MIFP’s VAPG-based Type Transform

call at line 4), and transforms all pointer types along the
way to ensure that the accurate bounds can be passed from
the object allocation to the pointer use site (where MIFP
instruments an additional check using the accurate bounds).
Because malloc returned pointer is stored in the global
variable ptr at line 1, MIFP will transform ptr’s type to
embed the accurate bounds. Because dptr at line 2 takes
the address of ptr, MIFP also transforms the points-to type
of dptr to show that it points to the widened fat pointer.
The size of dptr itself is not changed because dptr
is not used in an unsafe dereference. MIFP’s algorithm
automates all the instrumentation decisions above. The use
of VAPG simplifies the handling of points-to relationships
when transforming pointer types. We now walk through the
algorithm in details.

Expanded MIFP walkthrough. Given the program in
Figure 1a, MIFP first builds the VAPG as shown in Fig-
ure 1b. We hide unnecessary nodes for clarity. Nodes in
rectangular boxes (right side) are expression nodes repre-
senting pointer values in the source program. There are
three expression nodes in the example figure: the malloc
call at Line 4, the access to ptr at Line 5, and the
address computation of &ptr[1025] at Line 5 before

the store. Nodes in ellipses (left side) are allocation nodes
representing allocations or variable definitions. Nodes in
rounded rectangles (middle) are cell nodes representing
“alias sets” of objects, essentially an indistinguishable set
of objects from the instrumentation perspective. If Lines 7-
10 in Figure 1a are uncommented, dptr can point to either
ptr or a new global variable ptr2, then ptr2 will have a
separate allocation node but share the same cell node int*
because it is indistinguishable from dptr. MIFP uses cell
nodes as the smallest element for widening. That is, if the
algorithm widens a pointer, it widens all the other pointers
sharing the same cell to keep a consistent static type (e.g.,
for dptr and its dependent objects). The edges among cell
nodes represent type relationships (and thus dependencies)
among them. For example, as dptr is initialized with
&ptr, there is an points-to edge from the int** cell
of dptr to the int* cell of ptr. This edge means that
the type of cell int** is updated when the cell int*
is updated. Edges from or to expression nodes represent
dataflows (e.g., loads and stores). If a pointer expression
should carry metadata, these edges form the dataflow path
the metadata should propagate along with the pointer value.
VAPG extends existing Points-to Graph [11] with dataflow
edges, and it treats functions as in-memory objects.

After VAPG is built, MIFP runs the type transform
algorithm as shown in Figure 1c. Circled numbers label the
steps when the algorithm uses the nodes and edges. Step 1
identifies pointers requiring additional metadata using static
analysis, which finds pointers that may carry inaccurate
bounds and may be dereferenced in code that is not statically
safe. We highlight such pointers in orange. In the example
above, the expression &ptr[1025] created from line 5
is marked because it is dereferenced out-of-bound, and the
compressed bounds will miss the error.

Next, in Step 2, the algorithm performs a backward
analysis to identify all pointer expressions and cells that
require widening. Starting from each node found in the pre-
vious step (&ptr[1025]), the algorithm keeps traversing
back along incoming edges and marks all visited nodes for
widening, including expression ptr, cell int*, and the
malloc expression.

In Step 3, MIFP derives a new type for each node
in the subgraph with only cell nodes and edges between
them, as it contains all type dependencies. In particular, the
algorithm assigns new types until the fixedpoint is reached.
First, pointers requiring metadata (e.g., the int* cell) are
replaced with structs containing the original pointers and the
additional metadata. Then, whenever a type is converted, all
other cells whose type depends on that type (e.g., the int**
cell from dptr) are updated accordingly. The algorithm
keeps updating the types until no further changes are needed.
MIFP instruments the program to use the new types for
processed allocations and expressions afterward.

3. Design of PSan

PSan is a pointer-checking sanitizer that uses inline
metadata (fat pointers) and out-of-band metadata (shadow

memory) simultaneously. PSan inlines metadata whenever
this program transform is safe; otherwise, it stores metadata
in the shadow memory. This approach allows PSan to benefit
from the lower overhead of inline metadata without com-
promising generality or compatibility. PSan encapsulates
security enforcement logic in checker components, which
are responsible for identifying pointers requiring metadata
and instrumenting checks. The framework handles most
metadata maintenance, making individual security checkers
more straightforward to implement and extend.

PSan improves over MIFP by addressing the following
key challenges:

Supporting type-unsafe operations PSan tolerates ar-
bitrary pointer casts and unions in programs. MIFP
cannot support them because they create inconsistent
views on data types in memory, making subsequent
type transforms unsound. PSan solves this problem by
protecting type-unsafe pointers with shadow memory,
whereas MIFP can only inline metadata.
Protecting pointers exposed to external code PSan
uses shadow memory to store metadata for pointers that
cannot have type transforms (e.g., reachable from exter-
nal call argument). MIFP cannot protect such pointers.
Handling code constructs impairing pointer analysis
Constructing the VAPG depends on an inter-procedural
pointer analysis. This analysis does not support several
implementation-specific code constructs (e.g., pointer
vectors). When encountering them, it may create in-
correct points-to graphs, resulting in broken programs.
PSan uses an allowlist-based heuristic to accept safe
code constructs and identify unsupported ones, then
prunes reachable code from unsupported constructs to
prevent them from confusing the pointer analysis.

To overcome these challenges, PSan employs a disci-
plined approach shown in Figure 2. PSan first partitions
the input program into an analyzable slice (blue) and an
unanalyzable slice (red). We use the term unanalyzable
to denote code regions that contain constructs preventing
our analysis from safely inlining pointer metadata. PSan
uses a specialized taint analysis to identify pointers and
objects that may be affected by or reachable from such
unanalyzable code, and applies the inline scheme only to
unaffected pointers using the algorithm adapted from MIFP.
The metadata for the remaining pointers are maintained in
the shadow memory.

One challenge is that the taint analysis alone cannot
distinguish benign and bad pointer casts. Consider three
programs with pointer casts, where T and U are two incom-
patible types. Program A contains a bad cast of a pointer
T* to U* directly. Program B contains a bad cast chain
across function boundaries. It casts pointer T* to void* in
function f1, passes it to another function f2, and casts it
to U* there. Program C casts T* to void* in f1, passes
it to f2, and f2 performs a benign cast back to T*. While
the taint analysis can taint the bad cast in Program A, it
cannot taint the bad cast in Program B while leaving the
benign cast in Program C untainted, as doing so would

Input
Program

ptr
md

ptr md

Lookup

Analyzable

Unanalyzable

Fat Pointer

Shadow
Memory

A I

Analysis

Output
Program

Instrumentation

Figure 2: PSan’s Demand-Driven Metadata Inlining

require knowing the real type of the pointed object, which
requires inter-procedural pointer analysis. To support benign
casting in Program C, PSan adopts the separation of duty
with (1) the initial tainting of only value-independent bad
casts in Program A, and (2) the construction algorithm for
the VAPG detecting value-dependent bad casts in Program
B.

Because inlining the pointer metadata is equivalent to
transforming pointers into structs that include the metadata
in addition to the original pointers, the rest of this paper uses
type transform to describe the transform needed to inline
pointer metadata. This also includes passing metadata across
function calls and returns because they are equivalent to
transforming the function prototype to include the metadata.

Algorithm overview. Figure 3 shows the overview of
PSan. Nodes represent Program IR, data, and other inter-
mediate states. Algorithm steps are labeled with circled
numbers. Steps 1-5 correspond to the analysis stage in
Figure2, and Step 6 - to the instrumentation stage. PSan
requires whole-program IR as input; any functions or global
variables defined outside the input IR are treated as external
code and PSan prohibits type transform on data exposed to
them.

Step 1: Pre-transform. Compiler optimizations before
the generation of the whole-program IR can introduce un-
necessary pointer casts and destroy type information. For in-
stance, assuming there is a global variable T* ptr pointing
to struct type T, the code in line 1 below can be optimized
into line 2 by LLVM’s InstCombine pass:

1 ptr = (T*) malloc(sizeof(T)); // good
2 *(void*)&ptr=malloc(sizeof(T)); // bad

This transform prevents PSan from discovering the real
type of *ptr and disables metadata inlining for pointers
in T. To reduce unnecessary pointer casts, PSan starts with
pre-transforming the programs and trying to remove such
casts. For pointers that have lost type information (becoming
void*), we run use-based type inference to find a consis-
tent type for the pointed objects. This step makes more code
analyzable and improves the coverage of the inline metadata
scheme. In fact, without this step, PSan would be unable to
inline any metadata in evaluated programs. Besides casts,
our implementation detects and inlines allocation wrappers
(e.g., xmalloc) so that the intra-procedural analysis during
graph construction can look for the correct types inside the

callers of the allocation wrappers (i.e., callers of xmalloc).
Using this information, even if the malloc calls in the
example above are replaced with xmalloc (which uses
only void*), PSan still finds the object type T for the result
pointer.

Step 2: Initial tainting and pruning. To support
general programs, PSan needs to (1) remove code constructs
that mislead or interfere with pointer analysis and VAPG
construction (Step 3 below), and (2) reduce analysis time
spent on pointers and objects not applicable to metadata
inlining. Therefore, the second step is to run a static taint
analysis to identify the unanalyzable slice of code and then
prune it for the subsequent analysis. The taint analysis finds
all pointer expressions (program IR instructions, function
arguments, and addresses of global variables) that may be
used or produced by unanalyzable code constructs. To avoid
using heavyweight pointer analysis during static tainting, the
tainting in this step is imperfect in that (1) it does not track
taints across memory loads and stores, and (2) it assumes
there are no value-dependent bad casts. Step 3 (discussed
below) handles these cases by invoking pointer analysis to
propagate taints.

The exact definition of unanalyzable constructs is
implementation-specific. We consider code unanalyzable if
it contains (1) arbitrary pointer casts, (2) calls to externally
defined functions, or (3) other code constructs that are
hard for an implementation to analyze or transform (e.g.,
vectors). However, our prototype has support for calls to
functions like memcpy and memset, so such calls are
considered analyzable. In the implementation, we populate
an “allowlist” with known-supported code constructs, and
anything outside the list is considered unanalyzable.

PSan then takes unanalyzable code features as sources
for the static taint analysis and partitions the program. Once
the algorithm finds an unanalyzable operation on a pointer,
all its points-to objects are excluded from the analyzable
slice because they may be accessed from the unanalyzable
slice. In addition, if the code stores a pointer to a memory
location in the unanalyzable slice, we treat it as unanalyzable
and exclude its points-to objects from the analyzable slice1.
By removing all pointer expressions reachable from unana-
lyzable code, PSan ensures that all the memory accesses
to pointers in the analyzable slice can be identified and

1. These rules are implemented in both Steps 2 and 3.

Source
Program

① Pre-transform
Transformed

Pruned

②Initial Tainting
+ Pruning

Build VAPG③

Security
Analysis

④

⑤Type Solving
Partial
VAPG

Check
Requests

Type
Changes

⑥ Instrumentation

Unanalyzable slice

Analyzable slice

Legend
Output
Program

Figure 3: PSan Algorithm Overview

transformed.
After the taint analysis, the algorithm creates a pruned

version of the program suitable for the subsequent graph-
based analysis. This version contains the entire analyzable
slice and certain instructions (like function calls) from the
unanalyzable slice necessary for analysis. If a tainted value
has users in the pruned IR (e.g., storing a tainted value into
untainted memory), PSan replaces the value with placehold-
ers (implemented as calls to externally-defined functions)
and redirects the users to use the placeholder values. This
replacement effectively mitigates the impact of unanalyzable
values on the subsequent pointer analysis. The pruning also
removes all integer or floating-point instructions that have
no impact on pointer analysis. In our evaluation, the pruning
removes >40% of instructions on most programs, and it
reduces the pointer analysis time by 40%-99%.

Step 3: Graph construction. The third step is to run the
pointer analysis and construct the VAPG. We extended the
MIFP algorithm by introducing taints for graph nodes to
detect dataflow-dependent type mismatches and propagate
taints across memory loads and stores. During the graph
construction, if we find that there is an inconsistent type
(e.g., casting a T* pointer to void* in one function and
casting it back to U* instead of T* in another function),
we taint the affected objects and pointers, and they will be
excluded from metadata inlining. This step finalizes PSan’s
static tainting and program slicing for analyzable versus
unanalyzable code.

Step 4: Security analysis. This step invokes the checker
components to decide which pointers require checking (thus
requiring metadata) and where the checks should be placed.
In our prototype, the spatial and temporal safety checker is
applied to the pointer operands in all memory load/stores
and memcpy/memset/memmove calls.

Step 5: Type solving. After determining which pointers
require metadata for checking, Step 5 of the algorithm
identifies new types for the involved pointers and objects
in the VAPG. Pointers carrying metadata will be marked
for transform to structs (fat pointers) that have extra space
for metadata, and all other types depending on them (func-
tions, objects containing pointers, and pointers to them) are
updated accordingly.

Step 6: Instrumentation. In the last step, PSan instru-
ments the program using the transform information from
the previous step. PSan updates all code involved in type
changes, instruments code for metadata initialization and
maintenance, and invokes checker components to instrument

checks using the metadata.

4. Implementation

In this section, we describe our implementation of PSan
based on LLVM 15 with typed pointers. We use the SVF
framework [14] for pointer analysis.

PSan is an LLVM IR instrumentation tool that expects
whole-program LLVM IR as an input and produces the
corresponding instrumented IR. It supports the instrumen-
tation of C programs. The compilation pipeline using PSan
consists of (1) collecting the whole-program IR (e.g., via
gllvm [15]), (2) running PSan to instrument the IR, and
finally (3) compiling the instrumented IR with optimizations
to get executables. The prototype assumes that functions
and global variables defined in the whole-program IR are
inaccessible from external code unless (1) they are special
symbols (e.g., main), or (2) they are address-taken.

To support programs modifying pointers in uninstru-
mented libc functions (e.g., calling qsort to sort a pointer
array), we implemented the workaround introduced in Intel
MPX [16]: each pointer metadata stored in the shadow mem-
ory makes a copy of the pointer value so that if the unin-
strumented code modifies the pointer, PSan-instrumented
code loading the metadata can detect the mismatch between
the backup value and current value and then ignore the
stale metadata. Our experiments show that this workaround
increases the total run time by less than 5% for most
programs.

Code size. PSan consists of a generic framework (17
KLOC excluding SVF), individual checkers for specific
memory safety properties (1.1 KLOC combined), and a
shadow memory implementation (520 LOC). The complex-
ity of the framework mainly comes from the VAPG-based
algorithm (5.2 KLOC) and instrumentation (5.0 KLOC).
Of our currently implemented checkers, the spatial safety
checker has ~550 LOC, and the temporal safety checker
has ~530 LOC.

4.1. PSan as a Pointer-checking Framework

Figure 4 shows the design of the PSan framework. We
abbreviate “metadata” as MD. Boxes with colored back-
grounds represent different instrumentation stages (initial-
ization - blue, propagation - yellow, check insertion - red,
and miscellaneous - white). The implementation encapsu-
lates all checking-specific logic in the checker components

Function Memory Inline

Out-of-band

MD Requesting

MD Format

MD Load/Store

MD Init

Check

Checker

MD Addr Lookup

Range move/clear

Metadata scheme
Instrumentation

Metadata passing

Analysis

Taint Prune Graph Types

PSan Framework
MD Init

Propagate
Check

Legend

misc

Figure 4: PSan Framework Design

and splits the implementation of the shadow memory into
the metadata scheme component. Each component consists
of (1) a corresponding C++ class with virtual functions and
(2) (optional) a runtime library written in C. To reduce the
performance impact of the runtime library, our implemen-
tation links the LLVM IR of the runtime libraries during
instrumentation. This way, we can use existing compiler
optimizations after PSan’s instrumentation to optimize the
entire program.

Checkers. PSan allows arbitrary checkers to be imple-
mented. A checker needs to specify at least (1) where to
instrument checks (“MD Requesting” in Figure 4), (2) a
metadata representation (“MD Format”), (3) initial metadata
values (“MD Init”), and (4) how to instrument runtime
checks (“Check”). The checker can implement custom meta-
data compression by distinguishing metadata representation
in memory and in registers (“MD Format”) and overriding
the default metadata load/store (“MD Load/Store”) instru-
mentation. The checker is also responsible for optimizations
on the checks (e.g., elimination, coalescing, or hoisting). The
framework handles the rest of the analysis and instrumen-
tation, transparently utilizing both metadata schemes and
supporting any combination of checkers.

Metadata scheme. During the metadata passing, PSan
uses the inline scheme for function prototypes and object
allocations in the VAPG (thus in the analyzable slice) and
uses the shadow memory otherwise. The shadow memory
implementation is also decoupled from the framework. We
currently implement a two-level hierarchical lookup table
used in prior works [16], [17].

4.2. Checker Implementation

To provide memory safety protection for programs and
facilitate evaluation for PSan in Section 5, our implemen-
tation includes a spatial memory safety checker and a
temporal memory safety checker (Table 1). Both check-
ers insert checks before every memory load and store
and memset/memcpy/memmove call, and employ intra-
procedural analyses to eliminate redundant or statically-safe
checks.

Spatial safety checker. The spatial safety checker im-
plements traditional bounds checking. The metadata is an

TABLE 1: Spatial and Temporal Checker Specifications in
PSan

Spatial Checker
Metadata void* lb, void* ub

lb = &objMD Init
ub = lb + sizeof(obj)

Check !(addr<lb || addr+size>ub
|| addr>ULONG_MAX-size)

Temporal Checker
Metadata uint64_t* lockaddr,

uint64_t key
lockaddr = allocate_lock(),
*lockaddr = key =
init_key(count++, dynamic)MD Init
Stack allocations share frame locks and
keys

Check *lockaddr == key

*lockaddr == key &&
is_dynamic(key)Check free() deallocate_lock(lockaddr) after checking

Finalization Deallocate frame locks before function
returns

address pair for object bounds: a lower bound lb and an
upper bound ub. When an object is allocated, the lower
bound is set to the base address of the object (&obj), and the
upper bound is set to be one past the last byte of the object
(lb + sizeof(obj)). When the bounds for a constant
pointer expression are requested (e.g., &a[42] where a is a
global array), the checker looks through the expression, finds
the underlying object, and sets the corresponding bounds. If
the metadata is not empty, a bounds check will fail if the
memory access range goes below (addr < lb) or above
(addr + size > ub) the permitted range, or if the size
overflows. We implemented the traditional dominance-based
redundant check elimination, along with check coalescing
for struct member access and for “adjacent” checks (i.e.,
checks on the same pointer within the same basic block).

Temporal safety checker. The temporal safety checker
implements the traditional lock-and-key scheme [18] to
detect use-after-free and double-free errors.

For each object with a non-static lifetime (i.e., they can
be deallocated at some time during execution), the checker
associates a unique lock value (a 64-bit integer) with the
object. We derive the lock value from a global counter to
ensure its uniqueness. During the execution, the checker
examines the pointer metadata, including a pointer to the
lock (lockaddr) and the lock value (key). A mismatch
between the key and the lock value indicates a temporal
safety violation.

To allocate and deallocate the locks, the checker uses
allocate_lock and deallocate_lock functions, re-
spectively. We manage locks in a free list separate from
application data (as in SoftBoundCETS [18]) to prevent
confusing application data with locks when a use-after-free
is triggered. The lock deallocation will destroy the lock
value. All stack-allocated objects in the same function share
the lock and key; we refer to this shared lock as a frame
lock. For each function with a frame lock, the checker will
instrument code to deallocate the frame lock before each
return.

If a pointer has metadata (lockaddr is not NULL), a
temporal safety check loads the lock value and compares
it with the key; the check fails if it does not match the
lock value. Besides checking dereferences, the temporal
safety checker also performs checks before free calls to
catch double-free errors and deallocate the object lock. This
check ensures that the key is from a dynamic allocation
(is_dynamic(key), encoded in the key value) in ad-
dition to the lock-and-key comparison to prevent double-
freeing of a stack-allocated object.

5. Evaluation

In this section, we evaluate PSan on (1) its ability to pro-
vide memory safety protection, and (2) how well it reduces
the runtime and memory overhead of pointer checking. To
run a program with PSan instrumentation, we compile it
with O1 optimization flag (auto-vectorizations disabled),
collect the whole-program IR (e.g., using gllvm [15]), run
PSan to produce the instrumented IR, and finally compile
the IR with O3 flag to produce executables.

Porting SoftBoundCETS. We compare PSan’s security
and performance with SoftBoundCETS [9], one of the most
widely used pointer checkers that provide a level of security
comparable to that of PSan. SoftBoundCETS features spatial
and temporal safety checking using only shadow memory.
To evaluate its implementation along with PSan, we split its
instrumentation pass and runtime library from SoftBound-
CETS [9]’s LLVM 12 fork and ported it to LLVM 15. We
disable shadow memory pre-allocation (making allocations
on-demand) because it halts the program in initialization in
our setup. For a fair comparison, we mitigate differences in
instrumentation and optimizations by dropping SoftBound-
CETS’ changes to the LLVM optimizations, and we built
the runtime library into an LLVM bitcode file, which can
be linked into the instrumented IR for better optimizations.

5.1. Security Evaluation

To evaluate PSan’s memory safety protection strength,
we ran it on the Juliet 1.3 C/C++ test suite [10] and
compared the number of passed tests with the reported
numbers from SoftBoundCETS. Each test case contains a
“good” (bug-free) version and a “bad” (vulnerable) version
of the program. We compile and instrument both versions
and check the execution results. We consider a test case
passes if (1) the good version executes correctly, and (2) the
bad version aborts with error messages from PSan checkers.

Out of 64,099 test cases in the Juliet test suite, we
select 11,252 C test cases from categories corresponding to
spatial safety and temporal safety. From these test cases, we
excluded 5,862 and used 5,390 test cases for the evaluation.

Excluded test cases. We excluded 798 spatial and tem-
poral safety cases based on their categories. CWE123 (write-
what-where condition) is omitted because the test cases
deliberately let I/O functions (from console or network)
overwrite pointers. PSan permits this behavior to support
programs that depend on it. We omit CWE680 (integer
overflow to buffer overflow) because they could require a
gigantic malloc on LP64, which freezes the program and
halts the testing. We also omit CWE761 (free inside buffer)
because the PSan prototype is not implemented to detect this
error yet. Because the prototype uses decoupled spatial and
temporal checkers, the temporal checker cannot use pointer
bounds to identify the start address of the freed buffer. Thus,
it cannot validate the pointer argument to free alone. To
support the detection of this error, PSan can be extended to
pass metadata from the spatial checker to the temporal one.

Table 2 lists the reasons for the rest of the excluded cases
(5,064 in total). We categorize excluded test cases into the
following three types according to the reasons.

The first kind (“Opt”) is for test cases whose invalid
memory accesses get optimized away by the compiler. Be-
cause the current PSan prototype expects optimized input,
we cannot disable the optimization to preserve these invalid
accesses. Therefore, they did not reach the IR input for
PSan instrumentation, and we cannot trigger them in the
output executable. For example, most bad versions have all
the code optimized away, leaving only print-related calls.
Some spatial safety test cases contain one smaller buffer and
one larger buffer, and the bad version overflows the smaller
one by copying data from the larger one. The compiler can
optimize away the smaller buffer completely by “merging”
the smaller buffer into the larger one. The optimized version
transforms accesses to the smaller buffer into in-bounds
accesses into the larger buffer.

“Func” category is for test cases whose memory errors
are triggered in library functions we did not instrument
(e.g., str(n)cat/str(n)cpy in libc and print-related
functions). To support detection of such errors, one can ex-
tend PSan with manually written wrappers for these library
functions that also request checks on pointer arguments,
as done in SoftBoundCETS. Because SoftBoundCETS con-
tains wrappers for str(n)cat/str(n)cpy, it can find

TABLE 2: Security Evaluation on Juliet Test Suite

Category Total Excluded Tested (% Passed)
Opt1 Func2 Misc3

CWE121_Stack_Based_Buffer_Overflow 4036 1514 886 72 1564 (100%)
CWE122_Heap_Based_Buffer_Overflow 2504 494 570 224 1216 (100%)
CWE124_Buffer_Underwrite 1288 0 424 0 864 (100%)
CWE126_Buffer_Overread 972 24 18 90 840 (100%)
CWE127_Buffer_Underread 1288 146 424 0 718 (100%)
CWE415_Double_Free 228 120 0 0 108 (100%)
CWE416_Use_After_Free 138 0 58 0 80 (100%)
Sum 10454 2298 2380 386 5390

1 Invalid memory accesses are optimized away by the compiler.
2 Error is triggered in uninstrumented library functions (e.g., strcpy).
3 No invalid memory accesses or they are indistinguishable from valid ones in IR.

the invalid pointer arguments before calling into actual
implementations.

“Misc” test cases are either free from invalid accesses
or contain overflows within a single object. Some test
cases that are free from invalid accesses (presumably tar-
geting static code analyzers) use sizeof on pointers
to allocate objects instead of allocated type (i.e., using
sizeof(ptr) instead of sizeof(*ptr) as the size
argument for malloc), but they use allocated types with
the same size as pointers in 64-bit environment (int64_t
or double), creating no errors at runtime. The re-
maining “Misc” test cases contain intra-object overflow
from the first field (e.g., memcpy(ptr->buffer, src,
sizeof(*ptr)) where buffer is the first element
in the struct pointed by ptr). In this case, ptr and
ptr->buffer point to the same address in IR. Supporting
these test cases require (1) extending PSan’s spatial safety
checker with subobject bounds checking, i.e. narrow the
bounds when driving a pointer to a struct member to just
cover the intended member, and (2) modify LLVM opti-
mizations to preserve struct member address computation
(LLVM GetElementPointer instructions).

Test case setup and modifications. For test cases
only triggering errors with specific inputs from stdin,
we specify the input data in the test script to ensure that
the bad version can trigger the error at run time. To run
test cases that require generated random numbers to fall
in specific ranges, we modify the support library (where
macros for random number generations are defined) so that
the program can read provided values from environment
variables instead of generating random ones. For test cases
taking inputs from socket connections, we implement the
corresponding TCP server and client to pass the data. We
manually modify test cases running TCP servers (i.e., test
cases with “listen_socket” in names) to add setsockopt
call with SO_REUSEADDR to avoid socket bind failures.

Result. For the considered 5,390 test cases, as shown
in Table 2, PSan correctly detects all errors in the bad
versions and reports no false positives in the good versions.
SoftBound demonstrated identical performance to PSan.
We conclude that the PSan prototype accurately catches

all memory safety errors within its design scope, offering
security guarantees equivalent to those of SoftBoundCETS.

5.2. Performance Evaluation

For performance evaluation, we choose six out of eight
C programs from SPEC2017 and all ten programs from the
Olden benchmark. We select Olden because it is used in
the evaluation of MIFP [12], on which PSan is based. We
exclude perlbench and gcc from SPEC2017 because the
PSan Prototype currently does not produce fully functional
executables for them. We run all programs on Ubuntu 25.04
(Linux 6.14 kernel) with an Intel i7-7700 processor and
16GB of RAM.

We investigate the following research questions:
RQ1: Overall Performance: What is the overhead of PSan?

How well does it compare to using only shadow
memory in PSan and SoftBoundCETS?

RQ2: Overhead Decomposition: How to interpret the results
from RQ1? It is further divided into:

a) How well does PSan’s metadata inlining algorithm
perform in reducing metadata overhead?

b) How much of the overhead comes from checking
and how much from metadata? More overhead
from metadata indicates more room for overhead
reduction from PSan’s metadata inlining.

We now present the answers to the questions above in
separate subsections below.

5.2.1. RQ1: Overall performance. To compare the over-
head for enabling or disabling pointer metadata inlining, we
implemented an additional alternate version of PSan that we
refer to as PSan-shadow, which uses only shadow memory.
For the compilation workflow, we first create a single whole-
program LLVM IR for each benchmark program with O1
optimization but with vectorization disabled2 as the shared
input. We then build the baseline version with O3 opti-
mization from this IR. For PSan, we instrument the O1-
optimized IR, then run Clang with O3 compilation on the

2. PSan prototype cannot propagate metadata for pointer vectors, thus
enabling vectorization on the input IR will weaken PSan’s protection.

1202%

0%

200%

400%

600%

800%

SoftBoundCETS PSan-shadow PSan

(a) Runtime Overhead

0%

200%

400%

600%

800%

1000%

SoftBoundCETS PSan-shadow PSan

(b) Memory Overhead

Figure 5: Performance Evaluation Results

instrumented IR. For SoftBoundCETS, we immediately run
O3 optimization on the input IR, then invoke the instrumen-
tation, followed by O3 compilation. We enable both spatial
and temporal safety in PSan and SoftBoundCETS.

TABLE 3: Average Overhead for Each Tool

SPEC 2017 Olden
Perf Mem Perf Mem

SoftBoundCETS [9] 362% 295% 495% 351%
PSan-shadow 207% 369% 249% 424%
PSan 201% 367% 186% 305%

Figure 5a and 5b show the runtime and memory over-
head of each version on individual benchmarks. The average
overhead is summarized in Table 3. Because the ported
SoftBoundCETS fails to recover after a false positive in
x264_r, we omit the data for this program when computing
averages.

Compared to PSan-shadow, PSan’s inlined metadata or-
ganizations reduced the runtime overhead by 3% and 25%

and memory overhead by <1% and 28% for SPEC2017 and
Olden, respectively.

Compared with SoftBoundCETS, PSan runs 53% faster
while using 18% more memory in SPEC 2017. The higher
memory usage comes from the extra copy of the pointer
value for detecting stale metadata. The performance im-
provements are significantly larger in Older programs, where
PSan can inline more pointer metadata. Specifically, PSan
is 108% faster and uses 10% less memory.

5.2.2. RQ2: Overhead Decomposition. To study the con-
tribution of overhead from checking and metadata, we im-
plement and run two additional modes of PSan: (1) a stat
mode that collects runtime statistics during execution, and
(2) a nocheck version without runtime checks but with the
propagations and register pressure from metadata3. Figure 6
plots the collected statistics and the checking overhead
contribution.

3. nocheck mode replaces checks with assembly code comments that
simply list the name of registers storing metadata.

0.1
10
1000
100000
10000000

0%
20%
40%
60%
80%

100%

PointerLoadStore_Inline % PointerLoadStore_ShadowMem % CheckOverhead % ChecksPerPointerLoadStore

Figure 6: (Dynamic) Inline Metadata Coverage and Checking Overhead

Inline metadata coverage. The bar chart in Figure 6
plots the percentage ratio of pointer loads and stores using
inline (light blue, “PointerLoadStore_Inline”) or out-of-band
metadata (dark blue, “PointerLoadStore_ShadowMem”) re-
ported from stat mode runs. This ratio indicates the rate
of inlining. The inline metadata has almost full coverage in
five Olden programs. Programs with high inline metadata
coverage can achieve more overhead reduction because fat
pointers preserve the locality between a pointer and its
metadata, eliminating metadata address lookup. The pro-
gram bh has significant overhead reduction despite only
32% inline metadata load/store, because it has 7.7 × 107

memcpy/memset calls on analyzable objects. Such calls
would require accompanying metadata copying or clear
operations if accessed objects use shadow memory, thus
resulting in increased overhead without the inline scheme.
However, the overhead reduction is not linear with the cov-
erage of inline metadata; the benefit may not be clear until
the coverage is very high, depending on the processor. For
example, 544.nab_r has about 70% pointer load/stores
use inline metadata, which reduces the data cache misses
and the instruction count. Still, the overhead reduction is
only about 2% due to the doubled instruction TLB misses.

Checking vs metadata overhead. To compute the
breakdown of overhead on checking and metadata, we com-
pare the run time of the nocheck mode against normal
PSan’s operation: the overhead of the nocheck version is
solely due to metadata operations, and the difference is the
overhead from checking. The blue line in Figure 6 (“Check-
Overhead”) plots the computed contribution in percentage.
Most Olden programs have <40% overhead from checking
(except bh and power), which means that metadata oper-
ations contribute to the bulk of overhead. Therefore, Olden
programs with high inline metadata coverage (perimeter,
treeadd, and tsp in particular) get significant overhead
reduction (28%-51%). In contrast, SPEC programs either
have more overhead due to checking or lower inline meta-
data coverage. Therefore, compared to the PSan-shadow
version, PSan’s overhead reduction is still noticeable but
lower.

Check-to-access ratio. Besides the overhead contri-
bution computed from runtime difference, another metric
that can verify our estimation on checking overhead is the

ratio between the total number of checks and the number
of pointer loads and stores. This approximates how often
pointer’s metadata is used (checked) after it is accessed in
memory on average. Generally speaking, this ratio should be
positively correlated with checking overhead contribution:
more checks per pointer access means that the metadata
load/store contributes less and checking contributes more
to the overhead. We plot this ratio in orange lines using
a logarithmic scale in Figure 6 (“ChecksPerPointerLoad-
Store”). As shown in the figure, the ratio generally follows
the trend of the blue line (checking overhead). 10 out of 16
programs have less than 10 checks per pointer load/store, 4
out of 16 have 10-100 checks per pointer load/store, and the
remaining two (lbm_r and power) have >100 checks per
pointer load/store. lbm_r has 1.8× 104 pointer load/stores
in total but 1.6×1011 checks. This result correlates with our
evaluation of the overhead reduction resulting from metadata
handling.

6. Discussion and Limitations

Analysis time reduction from pruning. PSan’s pro-
gram slicing and code pruning require heavyweight pointer
analysis and VAPG construction. To reduce PSan’s runtime,
we restrict PSan’s application to only the analyzable pro-
gram slice, rather than the entire program. Most programs
require less than half of the time on the inter-procedural
pointer analysis stage with the pruning. For instance, it
reduces the analysis time on 538.imagick_r from about
400s to 23s (47s if including instrumentation) while still
achieving a 13% overhead reduction in the end.

Evaluation on real-world applications. We tested
PSan on real-world applications, including Pure-FTPd (FTP
server), nginx (HTTP server), SQLite (Database), FFmpeg
(Media processing), and larger applications such as Firefox
(Browser). Pure-FTPd and nginx were stable with PSan in-
strumentations. However, for these applications, we did not
observe measurable overhead attributable to PSan because
both applications are I/O-bound. The rest of the applications
do not currently work with PSan’s instrumentation due to
assertion failures, triggered when PSan detects errors in its
instrumentation due to some of the limitations below.

Limitations due to pointer analysis. Although PSan’s
design tolerates code constructs that can impair pointer

analysis (Section 3, discussion for Step 2), it still assumes
that the rest of the pointer analysis results are accurate.
However, we observed inaccurate pointer analysis results
(missing pointer value flow relationships) in our experiments
on real-world applications (e.g., in SQLite, FFmpeg), which
caused terminations of instrumented programs. Improving
SVF’s interprocedural pointer analysis is required to support
more complex programs.

Another consequence of the imprecision of the pointer
analysis is that PSan must be conservative when encoun-
tering indirect calls. We currently prohibit type transforms
on points-to objects of pointer arguments and return values
for indirect calls and possible callees, which reduces the
coverage of metadata inlining and increases overhead.

Limitations due to implementation effort. A number
of limitations can be overcome with more implementation
effort. First, our prototype does not yet support external
shared libraries referencing symbols defined within the
whole-program IR (e.g., plugins) because it assumes that
no external code can reference these symbols unless the
symbols are address-taken. Second, the prototype cannot de-
tect invalid pointer arguments passed to external code (e.g.,
use an out-of-bound pointer in strcpy). SoftBoundCETS
detects such issues by implementing wrappers that check
pointer arguments before calling the real function. PSan’s
implementation would also require a mechanism (either in
the runtime library or in the instrumentation code) to support
checking these function calls on a case-by-case basis.

Inherent limitations. PSan shares several limitations
with prior works [12], [17]. First, In general, it is difficult to
definitively infer object sizes. PSan uses MIFP’s heuristics
for inferring object sizes, which relies on calls to malloc
and memcpy, and it cannot update sizeof results in code
not covered by the heuristics above. For example, if the
code has a wrapper function for memcpy and prepares
size arguments outside the wrapper, PSan will be unable to
update these size arguments, and the memcpy may not copy
enough bytes, resulting in program misbehavior. Second,
PSan’s instrumentation does not enforce the atomicity of
metadata accesses. Therefore, to use multi-threaded code
with concurrent access to pointers with PSan, such code
must be ported to place such accesses in atomic regions.

Future work. There are a few directions that can in-
crease the amount of metadata inlining and improve PSan’s
performance. For example, PSan does not yet support meta-
data inlining for code using C++ features like polymor-
phism. Adding such support requires redesigning VAPG’s
type system (currently aligned with LLVM) to capture C++
polymorphism. In addition, type-agnostic algorithms using
void* (e.g., a generic linked list) currently prevent the
metadata inlining as well. One way of tackling this problem
is to duplicate the code to create a specialization for the data
type.

7. Related Work

Memory safety has been a long-standing problem, with
several surveys studying various enforcement designs [19],

[20], [21], [2], including pointer checking and alternative
approaches. Prior works have explored pointer checking in
software [9], [17], [18] and hardware [16], [13], [5], [6],
[4]. In this section, we discuss recent research directions
for memory safety protection.

Tagged pointers. Several enforcement schemes use
small metadata that fit into the unused high bits of pointer
values. The metadata is referred to as pointer tags. The
hard limit on metadata size reduces their protection gran-
ularity but improves performance. Low-Fat Pointer [22]
manipulates object placements so the object bounds can
be inferred from the high address bits. FRAMER [23], In-
Fat Pointer [24], HeapCheck [25], and CECSan [26] use
pointer tags to locate in-memory metadata. Besides storing
an index for metadata lookup, PACMem [27] protects the
pointer integrity with ARM Pointer Authentication. SPP [28]
uses tagged pointers to protect applications using persistent
memory (PM).

Memory tagging. Memory tagging schemes [29] attach
metadata to each memory location instead of each pointer.
This makes them tolerant to the loss of information about
pointers and objects and results in a lower number of false
positives. AddressSanitizer [7] is a popular sanitizer that
uses memory tags to label the allocation state of each object
so that it can catch accesses to deallocated or uninitialized
memory. ARM MTE [30] introduces memory tagging into
commodity hardware that can be used to detect spatial
and temporal memory errors [31]. DMTI [32] uses ARM
MTE with dynamic binary instrumentation to detect memory
errors in C/C++ binaries. IntegriTag [33] repurposes Intel
TME-MK for memory tagging to implement memory safety
policies.

Optimizations. WPBound [34] hoists spatial safety
checks outside loops. MemSafe [35] uses an inter-procedural
pointer data flow graph to optimize temporal safety checks.
Catamaran [36] offloads spatial safety checks to another
thread to improve performance. There are also efforts to
consolidate and remove redundant checks using static anal-
ysis [37] or combining static and dynamic analysis [38],
[39].

Language extensions. Checked C [40] extends C with
dependent types and annotations that enable expressing
pointer bounds using program expressions, eliminating the
need for extra metadata. 3C [41] automates porting existing
code into Checked C.

8. Conclusion

In this paper, we present PSan, the first pointer-checking
scheme that supports both pointer inlining and shadow
memory. We demonstrate how PSan utilizes taint analysis to
identify objects whose pointer metadata cannot be inlined,
allowing inlining to be applied to the remaining objects. Our
evaluation shows that PSan’s approach—compared to the
shadow-memory-only approach SoftBoundCETS—reduces
runtime and memory overhead for memory safety enforce-
ment. We believe PSan’s demand-driven metadata inlining
is an important step for lower-overhead pointer checking.

Acknowledgments

We thank the anonymous reviewers and shepherd for
their insightful comments and helpful feedback, which im-
proved this paper substantially. This research was supported
in part by NSERC CRD Grant CRDPJ 541942-19, NSERC
Discovery Grant RGPIN-2018-059, and a Research Contract
with Huawei Canada. David Lie is support by Tier 1 Canada
Research Chair CRC-2019-00242. Eric Liu was supported
by an Ontario Graduate Scholarship.

References

[1] Office of the National Cyber Director, “Back to the building blocks:
A path toward secure and measurable software,” White House, Tech.
Rep., 2024.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Porceedings of the 34th IEEE Symposium on Security
and Privacy, ser. Oakland ’13, San Francisco, CA, USA, May 2013,
pp. 48–62.

[3] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in
Proceedings of the ACM/IEEE 41st International Symposium on
Computer Architecture, ser. ISCA ’14, Minneapolis, MN, USA, June
2014, pp. 457–468.

[4] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“Hardbound: Architectural support for spatial safety of the C
programming language,” in Proceedings of the 13th International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XIII, Seattle, WA, USA,
March 2008, p. 103–114. [Online]. Available: https://doi.org/10.
1145/1346281.1346295

[5] S. Das, R. H. Unnithan, A. Menon, C. Rebeiro, and K. Veezhinathan,
“SHAKTI-MS: A RISC-V processor for memory safety in C,”
in Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded
Systems, ser. LCTES 2019, Phoenix, AZ, USA, June 2019, p. 19–32.
[Online]. Available: https://doi.org/10.1145/3316482.3326356

[6] S. Nagarakatte, M. M. Martin, and S. Zdancewic, “WatchdogLite:
Hardware-accelerated compiler-based pointer checking,” in
Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization, ser. CGO ’14, Orlando,
FL, USA, Feburary 2014, p. 175–184. [Online]. Available:
https://doi.org/10.1145/2544137.2544147

[7] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12).
Boston, MA: USENIX Association, Jun. 2012, pp. 309–
318. [Online]. Available: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[8] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-flow integrity: Precision, security, and
performance,” ACM Comput. Surv., vol. 50, no. 1, Apr. 2017.
[Online]. Available: https://doi.org/10.1145/3054924

[9] B. Orthen, O. Braunsdorf, P. Zieris, and J. Horsch, “Softbound+cets
revisited: More than a decade later,” in Proceedings of the 17th
European Workshop on Systems Security, ser. EuroSec ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
22–28. [Online]. Available: https://doi.org/10.1145/3642974.3652285

[10] NIST, “Juliet test suite for C/C++,” 2017. [Online]. Available:
https://samate.nist.gov/SRD/testsuite.php

[11] W. Wang, C. Barrett, and T. Wies, “Partitioned memory models for
program analysis,” in Verification, Model Checking, and Abstract
Interpretation, A. Bouajjani and D. Monniaux, Eds. Cham: Springer
International Publishing, 2017, pp. 539–558.

[12] S. Xu, E. Liu, W. Huang, and D. Lie, “MIFP: Selective fat-pointer
bounds compression for accurate bounds checking,” in Proceedings
of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses, ser. RAID ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 609–622. [Online].
Available: https://doi.org/10.1145/3607199.3607212

[13] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. M. Norton, D. Chisnall,
B. Davis, K. Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G.
Neumann, R. N. M. Watson, and S. W. Moore, “Cheri concentrate:
Practical compressed capabilities,” IEEE Transactions on Computers,
vol. 68, no. 10, pp. 1455–1469, 2019.

[14] Y. Sui and J. Xue, “SVF: Interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th international conference on
compiler construction. ACM, 2016, pp. 265–266.

[15] SRI International’s Computer Science Laboratory, “Whole program
llvm in go.” [Online]. Available: https://github.com/SRI-CSL/gllvm

[16] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer,
“Intel MPX explained: A cross-layer analysis of the Intel MPX
system stack,” Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 2,
June 2018. [Online]. Available: https://doi.org/10.1145/3224423

[17] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“SoftBound: Highly compatible and complete spatial memory safety
for C,” in Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI
’09, Dublin, Ireland, June 2009, p. 245–258. [Online]. Available:
https://doi.org/10.1145/1542476.1542504

[18] ——, “CETS: compiler enforced temporal safety for C,” SIGPLAN
Not., vol. 45, no. 8, p. 31–40, jun 2010. [Online]. Available:
https://doi.org/10.1145/1837855.1806657

[19] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019, pp. 1275–1295.

[20] E. Vintila, P. Zieris, and J. Horsch, “ Evaluating the Effectiveness
of Memory Safety Sanitizers ,” in 2025 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, May 2025, pp. 88–88. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00088

[21] M. Brohet and F. Regazzoni, “A survey on thwarting memory
corruption in RISC-V,” ACM Comput. Surv., vol. 56, no. 2, sep
2023. [Online]. Available: https://doi.org/10.1145/3604906

[22] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and
A. DeHon, “Low-fat pointers: compact encoding and efficient
gate-level implementation of fat pointers for spatial safety and
capability-based security,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, ser. CCS ’13,
Berlin, Germany, November 2013, p. 721–732. [Online]. Available:
https://doi.org/10.1145/2508859.2516713

[23] M. J. Nam, P. Akritidis, and D. J. Greaves, “FRAMER: A
tagged-pointer capability system with memory safety applications,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19, San Juan, Puerto Rico, USA,
December 2019, p. 612–626. [Online]. Available: https://doi.org/10.
1145/3359789.3359799

[24] S. Xu, W. Huang, and D. Lie, “In-fat pointer: Hardware-
assisted tagged-pointer spatial memory safety defense with subobject
granularity protection,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 224–240. [Online].
Available: https://doi.org/10.1145/3445814.3446761

https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/3316482.3326356
https://doi.org/10.1145/2544137.2544147
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3642974.3652285
https://samate.nist.gov/SRD/testsuite.php
https://doi.org/10.1145/3607199.3607212
https://github.com/SRI-CSL/gllvm
https://doi.org/10.1145/3224423
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1837855.1806657
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00088
https://doi.org/10.1145/3604906
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/3445814.3446761

[25] G. Saileshwar, R. Boivie, T. Chen, B. Segal, and A. Buyuktosunoglu,
“Heapcheck: Low-cost hardware support for memory safety,” ACM
Trans. Archit. Code Optim., vol. 19, no. 1, jan 2022. [Online].
Available: https://doi.org/10.1145/3495152

[26] X. Wang, B. Zhang, C. Tang, and L. Zhang, “Highly comprehensive
and efficient memory safety enforcement with pointer tagging,” in
2024 54th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks Workshops (DSN-W), 2024, pp. 74–81.

[27] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and
C. Zhang, “Pacmem: Enforcing spatial and temporal memory
safety via arm pointer authentication,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1901–1915. [Online]. Available:
https://doi.org/10.1145/3548606.3560598

[28] D. Stavrakakis, A. Panfil, M. Nam, and P. Bhatotia, “Spp: Safe
persistent pointers for memory safety,” in 2024 54th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), 2024, pp. 37–52.

[29] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and
D. Vyukov, “Memory tagging and how it improves c/c++ memory
safety,” 2018.

[30] Arm Architecture Reference Manual Armv8, for Armv8-A ar-
chitecture profile, Arm Limited, 2019, https://developer.arm.com/
documentation/ddi0487/ea. Accessed 2023-06-30.

[31] M. Unterguggenberger, D. Schrammel, P. Nasahl, R. Schilling,
L. Lamster, and S. Mangard, “Multi-tag: A hardware-software co-
design for memory safety based on multi-granular memory tagging,”
in Proceedings of the 2023 ACM Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 177–189.
[Online]. Available: https://doi.org/10.1145/3579856.3590331

[32] A. Hager-Clukas and K. Hohentanner, “Dmti: Accelerating memory
error detection in precompiled c/c++ binaries with arm memory
tagging extension,” in Proceedings of the 19th ACM Asia Conference
on Computer and Communications Security, ser. ASIA CCS ’24.
New York, NY, USA: Association for Computing Machinery, 2024,
p. 1173–1185. [Online]. Available: https://doi.org/10.1145/3634737.
3637655

[33] D. Schrammel, M. Unterguggenberger, L. Lamster, S. Sultana,
K. Grewal, M. LeMay, D. M. Durham, and S. Mangard, “Memory
tagging using cryptographic integrity on commodity x86 cpus,” in
2024 IEEE 9th European Symposium on Security and Privacy (Eu-
roS&P), 2024, pp. 311–326.

[34] Y. Sui, D. Ye, Y. Su, and J. Xue, “Eliminating redundant bounds
checks in dynamic buffer overflow detection using weakest precon-
ditions,” IEEE Transactions on Reliability, vol. 65, no. 4, pp. 1682–
1699, 2016.

[35] M. S. Simpson and R. K. Barua, “Memsafe: Ensuring the spatial and
temporal memory safety of c at runtime,” in 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation, 2010, pp.
199–208.

[36] Y. Zhang, T. Liu, Z. Sun, Z. Chen, X. Li, and Z. Zuo, “Catamaran:
Low-overhead memory safety enforcement via parallel acceleration,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 816–828.
[Online]. Available: https://doi.org/10.1145/3597926.3598098

[37] T. Jung, F. Ritter, and S. Hack, “Pico: A presburger in-bounds check
optimization for compiler-based memory safety instrumentations,”
ACM Trans. Archit. Code Optim., vol. 18, no. 4, jul 2021. [Online].
Available: https://doi.org/10.1145/3460434

[38] H. Xue, Y. Chen, F. Yao, Y. Li, T. Lan, and G. Venkataramani,
“SIMBER: Eliminating redundant memory bound checks via sta-
tistical inference,” in ICT Systems Security and Privacy Protection,
S. De Capitani di Vimercati and F. Martinelli, Eds. Cham: Springer
International Publishing, 2017, pp. 413–426.

[39] J. Zhang, S. Wang, M. Rigger, P. He, and Z. Su, “SANRAZOR:
Reducing redundant sanitizer checks in C/C++ programs,” in
15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, Jul. 2021, pp.
479–494. [Online]. Available: https://www.usenix.org/conference/
osdi21/presentation/zhang

[40] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi, “Checked c: Making
c safe by extension,” in 2018 IEEE Cybersecurity Development
(SecDev), 2018, pp. 53–60.

[41] A. Machiry, J. Kastner, M. McCutchen, A. Eline, K. Headley,
and M. Hicks, “C to checked c by 3c,” Proc. ACM Program.
Lang., vol. 6, no. OOPSLA1, apr 2022. [Online]. Available:
https://doi.org/10.1145/3527322

https://doi.org/10.1145/3495152
https://doi.org/10.1145/3548606.3560598
https://developer.arm.com/documentation/ddi0487/ea
https://developer.arm.com/documentation/ddi0487/ea
https://doi.org/10.1145/3579856.3590331
https://doi.org/10.1145/3634737.3637655
https://doi.org/10.1145/3634737.3637655
https://doi.org/10.1145/3597926.3598098
https://doi.org/10.1145/3460434
https://www.usenix.org/conference/osdi21/presentation/zhang
https://www.usenix.org/conference/osdi21/presentation/zhang
https://doi.org/10.1145/3527322

	Introduction
	Background: Metadata Inlining using Points-to Graph
	Design of PSan
	Implementation
	PSan as a Pointer-checking Framework
	Checker Implementation

	Evaluation
	Security Evaluation
	Performance Evaluation
	RQ1: Overall performance
	RQ2: Overhead Decomposition

	Discussion and Limitations
	Related Work
	Conclusion
	References

