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Abstract. Smart contracts have transformed blockchain applications,
enabling decentralized computation and automated asset management
without intermediaries. However, with the growth of decentralized fi-
nance, the high financial stakes make smart contract vulnerabilities par-
ticularly critical. Because vulnerabilities often go undetected, they lead
to substantial losses and diminished trust in blockchain systems.
Symbolic execution has emerged as a powerful technique to uncover sub-
tle vulnerabilities by systematically exploring feasible execution paths.
However, most existing symbolic execution tools for smart contracts are
tailored to specific vulnerability patterns, making them unsuitable for de-
tecting new types of vulnerabilities. In this paper, we introduce Greed,
a highly versatile symbolic execution framework for Ethereum (or EVM-
based) smart contracts. Greed features a state-of-the-art symbolic exe-
cution engine coupled with a suite of supporting analyses and a modular
design that allows security researchers to prototype new analyses rapidly.
To evaluate the effectiveness and extensibility of Greed, we compare it
with the state-of-the-art. We first show that Greed can explore signifi-
cantly more code paths – reaching 84% of all CALL statements, as opposed
to 9% on average across existing tools. To demonstrate the ease of use
(and extensibility) of Greed, we then implement a novel analysis to de-
tect controllable JUMPI instructions and evaluate it against all deployed
contracts on Ethereum and Binance Smart Chain (BSC), identifying 390
previously unknown vulnerable contracts.
By releasing Greed to the community, we aim to lower the barrier to
developing advanced security analyses for smart contracts, empowering
security researchers to rapidly prototype new analyses and contribute to
a more secure and resilient blockchain ecosystem.
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1 Introduction
Ethereum [15] is a global, decentralized blockchain that enables the deployment
and execution of decentralized programs (smart contracts). Smart contracts are
immutable programs that run on the Ethereum Virtual Machine (EVM) and
are executed on demand by blockchain users. Smart contracts have transformed
the way transactions are executed, enabling decentralized applications and au-
tomated asset management without intermediaries.
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Ethereum (and other blockchains) have witnessed the explosive growth of
a new form of blockchain-based finance that is known as decentralized finance
(DeFi) – a rich ecosystem of digital currencies, financial tools, and financial ser-
vices. Because of the exceptionally high stakes involved [12], identifying and fix-
ing vulnerabilities in smart contracts has become critical. Once deployed, smart
contracts cannot be easily patched, and exploits can lead to substantial financial
damage and loss of trust in blockchain systems [13]. Therefore, rigorous analysis
of smart contracts is necessary to ensure their security.

Symbolic execution [1] (SE) has emerged as a powerful technique for smart
contract analysis. SE systematically explores a contract in an emulated environ-
ment with symbolic variables representing possible (but unknown) inputs. As
the execution progresses, the SE system (or engine) tracks the state of the EVM
– e.g., program counter, stack, and memory. At specific points in the execution,
the engine queries a constraint solver to determine whether a given state is sat-
isfiable – that is, whether each symbolic variable has a feasible concrete solution.
When the execution reaches a conditional branch, and both the condition and
its negation are satisfiable, the execution path forks, and both branches are ex-
plored separately. This enables the generation of concrete inputs that reproduce
specific program behaviors, allowing one to uncover subtle bugs that might evade
traditional testing methods (e.g., fuzz testing).
Related work. Over the years, many SE tools have been developed to de-
tect vulnerabilities in smart contracts. Some focus on the formal verification of
specific properties [27, 29, 32, 33, 36]. For example, VerX [27] uses SE and in-
duction proofs to study safety properties. Others identify known vulnerability
patterns [4, 10, 18, 22–24, 26, 28, 31]. For example, teEther [23] identifies con-
tracts that leak funds to arbitrary users. While existing tools have shown some
success in their respective domains, they suffer from two key limitations: First,
the symbolic execution engines of existing tools lack critical analysis features –
for instance, a precise memory model – that limit their effectiveness. Second, the
architecture of existing tools is typically designed around specific vulnerability
patterns, making it challenging to adapt them to new vulnerabilities and extend
their capabilities beyond the original scope.
Our approach. In this paper, we introduce Greed, a highly versatile SE frame-
work designed for the analysis of EVM-based smart contracts. Greed addresses
the limitations of existing tools by providing a novel combination of analysis
techniques, including both a state-of-the-art SE engine and a suite of support-
ing analyses. Unlike traditional tools (with a fixed set of predefined analyses),
Greed enables security experts to build new analyses tailored to their needs.
Our experiments show that Greed’s architecture allows for more efficient path
exploration – and superior flexibility – without compromising analysis accuracy.

We implemented Greed in approximately 10,000 lines of Python code and re-
leased it as an open-source project1. Greed has been met with enthusiasm by
the community. After the open-source release, the project attracted hundreds

1 https://github.com/ucsb-seclab/greed
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of new users (in terms of distinct project downloads, GitHub “stars”, and com-
munity contributions). We are also aware of several academic institutions and
corporations that are either actively using Greed or evaluating it for potential
use in their systems.

This paper makes the following contributions:

– We describe Greed, a highly versatile symbolic execution framework de-
signed for EVM-based smart contracts. Greed features a state-of-the-art
symbolic execution engine and a novel combination of analysis techniques
within a modular and extensible architecture, enabling security experts to
tackle complex security challenges.

– We compare Greed against the state-of-the-art and show that it can explore
significantly more code paths. Greed outperforms all existing tools, reaching
84% of all CALL statements, compared to 9% across alternatives (on average).

– To demonstrate the ease of adding additional security analysis, we implement
a novel checker to detect controllable JUMPI instructions and evaluate it
against all contracts in Ethereum and BSC [3], identifying 390 previously
unknown vulnerable contracts.

2 Motivation

Existing symbolic execution systems focus on detecting known classes of vul-
nerabilities. This specialization has led to two main limitations. First, existing
systems often forego implementing comprehensive, robust analyses, opting in-
stead for a subset of features tailored to the targeted vulnerabilities. A precise
implementation of all analysis features is sometimes unnecessary for individ-
ual security analyses. For example, ERC20 tokens rarely interact with external
contracts. Thus, a full-fledged cross-contract analysis may be unnecessary for
analyzing ERC20 token contracts [19]. Second, in addition to the lack of analy-
sis features, many existing systems lack any underlying static analysis, such as
control-flow graph (CFG) recovery. Yet, a balanced integration of static and dy-
namic analysis is crucial for building sophisticated security tools. The absence of
static analyses makes extending and scaling existing systems (for instance, with
exploration strategies) inherently challenging. This underscores the necessity for
a versatile unified analysis framework that can be repurposed for complex, evolv-
ing security analyses.

2.1 Basic Analysis Features

Modern smart contracts frequently use cross-contract interactions, memory op-
erations, and hash functions. Not properly supporting these three features leads
to significant limitations in the engines’ analysis capabilities. For instance, in
Figure 1, we present a contract that – although seemingly simple – cannot be
precisely analyzed without implementing the aforementioned analysis features.
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1 pragma solidity ^0.8.0;
2
3 struct Action {
4 address router;
5 bytes data;
6 }
7
8 contract Dispatcher {
9 address router = 0xROUTER;

10
11 function set_router(Action action) public returns (Action) {
12 if (action.router == address (0)) {
13 action.router = router;
14 }
15 return action;
16 }
17 }
18
19 contract Executor {
20 Dispatcher dispatcher = Dispatcher (0 xDISPATCHER);
21 mapping(address => uint256) routerCallCounts;
22
23 function execute(Action [] memory actions) public {
24 // Actions (copied in memory) have symbolic offset and size
25 for (uint256 i = 0; i < actions.length; i++) {
26 // Cross -contract call
27 Action memory action = dispatcher.set_router(actions[i]);
28 // Another (controllable) cross -contract call
29 // BUG: ASSUMES ACTION.ROUTER IS ALWAYS SET BY DISPATCHER
30 action.router.call(action.data);
31 // Increment mapping variable
32 routerCallCounts[action.router] += 1;
33 }
34 // Check mapping variable
35 require(routerCallCounts[dispatcher.router] > 1);
36 }
37 }

Fig. 1. Simplified Solidity code of the Executor contract. The contract parses a list
of provided actions (calldata), interacts with the Dispatcher contract to fetch the
router address, then interacts with the router and updates the respective interaction
counter. RED: requires a precise memory model. YELLOW: requires cross-contract
analysis. GREEN: requires a precise SHA model.

Cross-contract interactions. Ethereum allows smart contracts to CALL func-
tions of other contracts (Figure 1: Line 27, Line 30), enhancing modularity and
code reuse. However, interactions inherently increase the complexity of smart
contracts and can introduce unexpected bugs. For instance, the external con-
tract might operate maliciously and inadvertently change its behavior. Without
precise cross-contract analysis, it is impossible to detect vulnerabilities arising
from such interactions.

Memory model. In the EVM, memory is a volatile, mutable storage area that
exists only during the execution of a contract function. Any data stored in mem-
ory is freed once the execution terminates. Memory is efficient because it avoids
the overhead of writing to persistent blockchain storage. This makes it suit-
able for intermediate calculations, temporary variables, and data manipulation
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within a function call. Nonetheless, modeling symbolic memory operations is
challenging, and existing systems resort to approximations – such as the strate-
gic concretization of symbolic offsets and lengths. When a symbolic memory
buffer (for example, the actions array on Line 23) is accessed (Line 25), it is
undeniably convenient to concretize its length. However, this prevents the sys-
tem from detecting vulnerabilities that arise from different configurations. For
example, the Executor contract reverts unless we provide an array with at least
two actions – since the variable routerCallCounts is incremented at most once
per array element.
Hash functions. Handling cryptographic hash functions (SHA) is crucial due
to their pervasive use by dynamic data types – such as arrays and mappings. In
Solidity, fixed-size data types have predetermined slots in persistent storage, but
dynamic data types grow during execution. To manage this, Solidity computes
storage slot offsets dynamically using hash computations: First, all array and
mapping variables are assigned a “base slot”. Then, the storage slot for an array
element with index i is calculated as SHA(base_slot) + i. Similarly, the storage
slot for a mapping element with key key is calculated as SHA(key, base_slot).
Accurately modeling these hash computations is essential for recognizing data
storage patterns (e.g., Line 32 and Line 35) and detecting vulnerabilities related
to data access and manipulation.

2.2 Beyond the State-of-the-Art

Robust basic analysis features provide a necessary foundation for smart con-
tract analysis. However, these capabilities alone are insufficient for thoroughly
analyzing modern, complex blockchain applications with evolving attack vec-
tors. We argue that it is essential to complement basic analysis features with
supporting techniques such as static analysis and exploration strategies. Static
analysis techniques – such as control-flow graph recovery and dependency track-
ing – can isolate critical code regions where vulnerabilities are most likely to
reside. Exploration strategies – such as directed search – allow directing the
symbolic execution engine toward (previously identified) critical code regions to
verify the presence (or absence) of vulnerabilities. Rather than exhaustively ex-
ploring all paths, exploration strategies allocate resources to areas with a higher
likelihood of revealing subtle bugs, thus addressing long-standing challenges like
state explosion. In the following sections, we present our approach to integrating
advanced analysis features in our symbolic execution framework.

3 Practical Symbolic Execution with Greed

Figure 2 shows an overview of Greed’s architecture. Greed exposes several
interfaces that enable both static and dynamic analysis. Initially, the contract
is pre-processed using the Gigahorse static analysis framework [20,21]. The con-
tract’s intermediate representation (organized in functions, blocks, and state-
ments) is stored in a project object. The project exposes an interface to all
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Fig. 2. Overview of Greed. The project object exposes static information. The
simulation manager tracks all execution states and allows one to manipulate them.
The states store the execution environment and additional context.

available static analyses (e.g., CFG, Slicing). During execution, the simulation
manager orchestrates all the execution states, which are organized in “stashes”
that indicate whether they are active, pruned, suspended, etc. The simulation
manager also accepts various exploration strategies. At a high level, explo-
ration strategies allow one to programmatically manipulate the execution states
and determine which state should be executed next – or which states are uninter-
esting to explore. Each state represents a snapshot of the execution at a specific
program location, which stores both the execution environment and additional
context. This is where the basic analysis features live (see Section 2.1). Finally,
state plugins track additional context (e.g., SHA operations and constraints)
that allows for checking the satisfiability of an execution state. The modularity
of Greed allows one to easily write new static analyses, exploration strategies,
and state plugins – or experiment with different memory models and solvers.

3.1 Static Analysis

Greed operates on the Gigahorse IR, which provides its foundational static
analysis capabilities: decompilation, IR lifting, constant folding, basic control-
flow and data-flow modeling, and loop analysis. This allows Greed to instead
focus on advanced static analyses (e.g., backward and forward program slic-
ing, reachability analysis) and symbolic execution, which are highly valuable
for building complex security tools. Below, we discuss some examples of static
analyses available in Greed.
Control-flow graph (CFG). Gigahorse provides state-of-the-art CFG and
call-graph reconstruction for EVM bytecode. This is automatically available in
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Greed. The CFG encodes control-flow relationships, enabling reasoning about
reachability between statements. For instance, this is essential for directing the
execution toward a desired statement.
Data-flow graph (DFG). Similarly, Gigahorse also provides state-of-the-art
DFG reconstruction.The DFG captures data dependencies, allowing one to track
how variables are assigned and manipulated throughout the contract.
Reachability. Greed’s reachability analysis allows one to automatically deter-
mine whether an execution path might exist between two program points. For
blocks within the same function, Greed directly analyzes their relationships in
the CFG. For blocks in different functions, Greed identifies possible sequences
of function calls that connect them. When available, Greed also examines the
call stack to identify additional paths that connect the two program points.
Program slicing. Leveraging the CFG and DFG, Greed can calculate a “slice”
of statements that affect (backward) or are affected by (forward) a given vari-
able. For instance, this is essential for implementing under-constrained execution,
which enables an approximate but lightweight analysis of local properties.

3.2 Exploration Strategies

Exploration strategies allow for the orchestration of execution states and typi-
cally employ a combination of state pruning, prioritization, and manipulation.
Pruning allows one to discard states that are unfit for the desired analysis goals.
Prioritization allows one to prioritize the exploration of certain states. Manipu-
lation allows one to alter (the execution environment of) certain states. Below,
we discuss some examples of exploration strategies available in Greed.
Directed search. Directed search is an example of an exploration strategy
that can leverage both state pruning and prioritization to direct the symbolic
execution toward a desired (target) statement. This strategy is supported by
a CFG-driven reachability analysis. States closest to the target statement are
prioritized. States unfit to reach the target statement are (optionally) discarded.
This allows one to focus the analysis on specific execution paths that are relevant
to a desired property.
Under-constrained search. Under-constrained search allows executing arbi-
trary program slices by first creating a symbolic state at a specific program loca-
tion and then manipulating the execution states to manage undefined behavior.
First, Greed creates a symbolic execution state at the first program location in
the slice. Then, the under-constrained search rewrites all undefined variables to
assign them fresh 256-bit symbolic variables. Optionally, the under-constrained
search can guide (force) the execution along a predetermined, statically observed
path – even if that path is unfeasible in a fully constrained context. This allows
one to effectively study the (security) properties of arbitrary program slices with-
out incurring the overhead of fully-constrained symbolic execution.
Loop limiting. Loop limiting is an essential technique for mitigating state ex-
plosion during symbolic execution. In Greed, a counter-based strategy monitors
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the number of times a given program point is reached. Once a predefined thresh-
old is exceeded, we prune the corresponding execution state. This approach effec-
tively controls redundant loop iterations, ensuring that excessive unrolling does
not overwhelm the analysis.
State monitoring and rewriting. State rewriting enables the dynamic mod-
ification of execution states to incorporate external information – such as con-
crete execution data, observed blockchain states, or freshly generated symbolic
variables. Through this process, one can refine the analysis context to reflect
relevant properties or to simulate any desired execution state. For example, a
symbolic variable representing an asset’s price can be replaced with its actual
value retrieved from a live oracle, thereby allowing the analysis to mirror re-
alistic market conditions. Additionally, by coupling state rewriting with state
monitoring, Greed can collect valuable metrics (e.g., constraint-solving time)
that can be used to identify or prune paths with a desired property – for example,
computationally expensive paths.
Selective concretization. Selective concretization is an example of state ma-
nipulation, where a heuristic determines whether any environment variable should
be concretized. This is helpful to enforce a specific property (“the value of vari-
able X must be exactly 42 to trigger the vulnerability”) or to simplify the analysis
when the constraints are too complex (at the cost of possible false negatives).
Classic prioritization. Depth-first search (DFS) and breadth-first search (BFS)
are classic examples of state prioritization. Execution states are never pruned.
Instead, a heuristic determines which states should be explored first. In DFS,
deep execution states are explored first. In BFS, shallow execution states are
explored first. Exhaustive strategies such as BFS or DFS are often impractical
for large contracts. In fact, even simple loops or repeated subroutine calls can
rapidly inflate the state space. For this reason, exhaustive search strategies are
often paired with additional strategies for state pruning.

3.3 Additional Analysis Features and Implementation Details

In the following paragraphs, we discuss important implementation details beyond
the analysis features detailed above.

– Cross-contract interactions: To handle cross-contract interactions, Greed
defaults to concretizing both the target address and the parameters of the
CALL instruction. This allows approximating the execution state without
incurring the overhead of symbolically executing an external (possibly un-
determined) contract. Nonetheless, Greed can be easily configured to sup-
port fully symbolic CALL parameters – in fact, this feature (symbolic cross-
contract interactions) has been used in the context of other academic works.

– Memory and storage modeling: Greed implements a precise memory
model [16] that tracks EVM memory as a byte-addressable array supporting
symbolic reads, writes, and memcopy-style operations. Our design employs
an instantiation-based approach, where memory updates are lazily instanti-
ated (on demand) during reads. To avoid redundant constraint instantiation,
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we also integrate a caching mechanism such that when a read is performed
at a concrete address, the corresponding value (indexed by both the address
and read width) is cached. For storage, Greed uses a hybrid model based
on array theory, treating storage as an array of 256-bit words keyed by either
concrete or symbolic values. Optionally, concrete storage reads (SLOADs) can
retrieve actual on-chain data at a specified block number, and our design
allows the use of these concrete values in symbolic operations.

– Hash functions: We employ a two-phase strategy for handling symbolic
hash operations such as SHA. During symbolic execution, SHA instructions
are captured as symbolic expressions that record the input parameters (off-
set, size, and memory contents) in order. When operating in “greedy” mode,
Greed first attempts to concretize these parameters. If a unique solution is
found, Greed computes its SHA hash value [2] and adds constraints that link
the symbolic expression to this concrete value. Otherwise, it instantiates Ack-
ermann constraints [5] to link multiple SHA operations as non-interpretable
functions. After execution, a dedicated resolver plugin steps through the
observed SHA operations in chronological order and fixes their outcomes by
re-evaluating the memory and enforcing the appropriate constraints.

– Solver integration: Greed interfaces with an SMT solver – by default,
Yices [14] – to query the satisfiability of path constraints. As with most com-
ponents in our architecture, alternative SMT solvers can be substituted. Dur-
ing development, we evaluated various solvers, such as Z3 [11] and Boolec-
tor [8] – and found that Yices consistently offered the best performance.

Finally, as briefly mentioned above, Greed also offers high-level APIs for im-
plementing custom vulnerability checks, exploration strategies (for state pruning,
prioritization, and manipulation), and domain-specific analyses, simplifying the
development of new smart contract security tools.

4 Evaluation

We evaluate the performance, analysis features, and versatility of Greed through
a series of experiments. First, we qualitatively compare its analysis capabili-
ties against existing systems (see Table 1), highlighting comprehensive support
for basic analysis features, static analysis, and advanced exploration strategies.
Second, we quantitatively compare Greed’s targeted exploration capabilities
against other state-of-the-art systems. Our results show that Greed reaches sig-
nificantly more (10x) CALL statements in a sample of (randomly chosen) smart
contracts. Third, we study the effect of different configuration settings on the
performance of Greed. Finally, to demonstrate the extensibility of Greed, we
implement a novel analysis to detect controllable JUMPI instructions. Greed
identifies 390 previously unknown vulnerable contracts on Ethereum and BSC.
Experimental setup. For all our experiments, we use a server equipped with
512GB of RAM and dual Intel Xeon Gold 6330 CPUs. We use GNU Parallel [34]
to parallelize our tasks, and always limit each task to 5GB of RAM and 60
seconds of CPU time. We compare against the latest available version of all
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Table 1. Comparison of the features of existing systems. Not implemented. Par-
tially implemented. Fully implemented.

Tool CROSS MEM HASH STATIC API

Oyente [24]
Maian [26]
teEther [23]
Manticore [25]
Mythril [10]
EthBMC [18]

Greed

tools at the time of writing: Maian [26] at commit 3965e30, teEther [23]
at commit 04adf56, Manticore [25] at commit 8861005, Mythril [10] at
commit 125914a, and EthBMC [18] at commit e887f33. Notably, integrating
Maian in our evaluation environment required significant modifications – due
to syntax errors, broken dependencies, and missing implementations for several
key opcodes. Similarly, we were unable to run Oyente [24] in our environment,
and thus, we have excluded it from our evaluation.

4.1 Analysis Features

In Table 1, we show a comparison between existing systems and Greed, with
a focus on basic analysis features (similar to Frank et al. [18]), availability of
static analyses, and availability of a high-level API to develop ad hoc static and
dynamic analyses. In our comparison, we only include symbolic execution tools
that are both publicly available and operate on EVM bytecode – even in the
absence of source code.
Cross-contract interactions. Greed, Manticore, Mythril, and EthBMC
are the only systems that support some form of cross-contract analysis. Man-
ticore and Mythril only support CALL instructions with concrete (or con-
cretized) parameters. Greed also supports concrete CALL parameters and han-
dles symbolic parameters through concretization. Nonetheless, Greed can be
configured to handle fully symbolic parameters (see Section 3.3). EthBMC sup-
ports concrete or fully symbolic CALL parameters.
Memory model. Maian supports symbolic memory reads (not writes). teEther,
Manticore, and Mythril support simple symbolic memory operations, but
must concretize all symbolic memcopy-like operations (e.g., CALLDATACOPY).
Oyente does not support any memcopy-like operation. Greed and EthBMC
implement a precise memory model [16] and can handle symbolic memory reads,
writes, and memcopy-style operations. As discussed in Section 3.3, Greed also
implements a caching mechanism to avoid redundant constraint instantiation.
Hash functions. Maian, teEther, and Mythril support the hashing of
memory buffers with fully concrete offsets, lengths, and values. Oyente does not
support symbolic hashing operations, and approximates the result of concrete
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Table 2. Number (Percentage) of reached CALL instructions across different analysis
tools. We run each system for 60 seconds (per contract) to assess its exploration capa-
bilities, highlighting the coverage differences.

Small Medium Large Total

Maian2 127 (13%) 20 (2%) 4 (0%) 151 (5%)
teEther 247 (25%) 58 (6%) 1 (0%) 306 (10%)
Manticore 157 (16%) 14 (1%) 2 (0%) 173 (6%)
Mythril 294 (29%) 118 (12%) 12 (1%) 424 (14%)
EthBMC 224 (22%) 87 (9%) 31 (3%) 342 (11%)

Greed 960 (96%) 821 (82%) 745 (75%) 2,526 (84%)

hashing operations. Greed, Manticore, and EthBMC support the hashing
of arbitrary (symbolic or concrete) memory buffers.
Static analysis. To complement our robust basic analysis features, Greed in-
tegrates advanced static analyses that allow us to focus symbolic execution on
critical code regions. Greed inherits a number of static analyses from Giga-
horse [20, 21] (e.g., CFG recovery) and implements additional static analyses
(such as program slicing). Among the other tools, only teEther incorporates
static analysis – specifically, CFG recovery and backward slicing.
High-level APIs. Finally, Greed is the only system that offers a high-level
API to develop ad hoc static and dynamic analyses. Greed also offers a number
of (built-in) exploration strategies such as directed search, loop limiting, state
rewriting, and selective concretization.

4.2 Exploration Capabilities

While existing systems excel at detecting specific vulnerabilities, they prove lack-
ing when evaluated on slightly different tasks. We demonstrate the performance
of Greed with a basic code reachability experiment. First, we select a target
smart contract with a CALL statement x. Then, we alter all existing systems to
simply emit a report and terminate when successfully executing (reaching) the
chosen statement x. To do this, we leverage the ability of Maian, teEther,
and EthBMC to detect “prodigal” contracts – i.e., CALL statements with posi-
tive Ether value and controllable target address [26]. We (slightly) modified that
analysis so that when a CALL statement is reached, instead of verifying the prodi-
gal property, we just check whether the instruction address matches that of the
chosen statement x. If so, the analysis simply terminates. Similarly, we modify
the execution engine of Manticore and Mythril to terminate when executing
the chosen statement x. As mentioned above, we were unable to run Oyente
in our environment, and thus, we excluded it from our qualitative evaluation.
Finally, we run Greed in its default configuration (with directed search).

2 Integrating Maian in our evaluation environment required significant modifications.
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We evaluate all tools on a sample of 3,000 (randomly chosen) Ethereum
contracts3 and report our findings in Table 2. In summary, we find that Greed
outperforms all existing tools, reaching 84% of all CALLs – whereas others reach
9% on average. We attribute the performance gap observed in related work
to a combination of (1) limited basic analysis features and (2) lack of (robust)
exploration strategies. In fact, existing systems perform reasonably well on small
contracts but struggle to handle the complexity of larger contracts. For example,
teEther is the only system with a (CFG-driven) exploration strategy, but its
CFG recovery often fails on larger contracts. Moreover, we observe that all tools
have several failures related to misimplemented instructions and mishandling of
external or symbolic data. For example, teEther discards any execution path
that includes instructions such as RETURNDATACOPY or RETURNDATASIZE, whereas
Maian fails to model instructions such as SELFBALANCE.

4.3 Ablation Study

In the following paragraphs, we study the effect of different analysis configura-
tions on the performance of Greed. In its default configuration, Greed uses full
support for symbolic memory operations (including read, write, and memcopy-
like operations), symbolic hash operations, and a directed search strategy that
uses prioritization – without pruning.
Directed Search. Table 3 shows the number of reached CALL instructions under
different directed search configurations. Disabling pruning (while keeping prior-
itization active) results in a slight increase in reached targets across all contract
sizes (from 958 to 960 for small contracts, from 780 to 821 for medium contracts,
and from 708 to 745 for large contracts). We attribute this to imprecisions in
the recovered control-flow graph that may incorrectly rule out reachable tar-
gets: When this happens, the lack of pruning allows Greed to explore these
additional paths. However, this gain comes with an increased memory footprint
(rising from an average of 180MB to 260MB per contract). In contrast, disabling
prioritization leads to a notable drop in performance, as the execution engine
wastes resources exploring paths that are farther from the target state. When
both pruning and prioritization are disabled, the deterioration in performance is
even more pronounced, especially for medium and large contracts. Importantly,
even in this worst-case configuration, Greed still outperforms all other tools by
a wide margin.
Memory Model. We further investigate the impact of our precise symbolic
memory model on Greed’s performance by replacing it with (gradually) sim-
plified variants – that is, disabling our caching layer and symbolic memory op-
erations. We observe that disabling our caching layer results in a sharp drop in
analysis performance across all contract sizes, although this is more evident in
larger contracts. As detailed in Table 4, disabling our symbolic memory model
3 We compute the size distribution of all deployed contracts and sample 1,000 small

contracts (smallest 25%), 1,000 medium contracts, and 1,000 large contracts (largest
25%) with distinct code.
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Table 3. Number of reached CALL instructions under different directed search config-
urations. Disabling pruning yields a slight coverage increase but raises memory usage,
whereas disabling prioritization leads to a notable drop in performance – more pro-
nounced in large contracts.

Prioritization No Prioritization
S | M | L S | M | L

Pruning 958 | 780 | 708 953 | 745 | 646
No Pruning 960 | 821 | 745 947 | 513 | 352

Table 4. Comparison of the number of reached CALL instructions under different
memory model configurations. Using a concrete memory model results in faster anal-
ysis times at the cost of decreased precision. Our caching layer allows for boosting
performance without compromising precision.

Symbolic Memory Concrete Memory
S | M | L S | M | L

Memory Cache 960 | 821 | 745 937 | 866 | 757
No Memory Cache 912 | 707 | 633 925 | 745 | 720

(and instead using a concrete one) results in a modest overall boost in perfor-
mance. We observe that, although approximating symbolic memory operations
with their concrete counterparts may result in faster analysis times, this comes
at the cost of a much-decreased analysis accuracy. In fact, we argue that Greed
achieves the best analysis results by combining our symbolic memory model with
our caching layer: this configuration yields robust performance without compro-
mising analysis accuracy.
Hash Functions. We find that disabling our precise handling of (symbolic)
hash operations results in a slight boost in analysis performance (from 960 to
962 for small contracts, from 821 to 824 for medium contracts, and from 745 to
755 for large contracts). Similar to the observations above, while approximating
hash operations might result in faster analysis times, this comes at the cost of a
much-decreased analysis accuracy.
Cross-contract interactions. Finally, in the context of this experiment, our
reachability analysis stops when it encounters an external interaction (CALL).
Therefore, any configuration change in our handling of external interactions does
not lead to any change in performance.

Overall, our results underscore the importance of incorporating advanced anal-
ysis features – such as exploration strategies and a precise symbolic memory
model – in Greed. We observe that while disabling pruning can reveal addi-
tional reachable targets, prioritization is essential to guide the search efficiently
and keep the state space manageable. Similarly, our precise memory model and
caching layer enable Greed’s accurate analysis of complex memory operations,
thus contributing to its overall superior performance.
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1 # Discard statements with concrete jump destination
2 stmts = set()
3 for s in proj.stmts:
4 if s.op == "JUMPI" and not s.dest_val:
5 stmts.add(s)
6
7 # Analyze each JUMPI statement
8 for s in stmts:
9 # Set up directed symbolic execution

10 simgr.use_strategy(DirectedSearch(s))
11
12 # Explore each state until we reach the target statement
13 for found in simgr.findall ():
14 # Jump condition must be satisfied
15 found.solver.add_constraint(Equal(s.cond_val , TRUE))
16
17 # Jump destination must be controllable
18 found.solver.add_constraint(Equal(s.dest_val , ARBITRARY))
19
20 # Check if the state (with the new constraints) is satisfiable
21 if found.solver.is_sat ():
22 yield found.solver.eval_memory(found.calldata , CALLDATASIZE)

Fig. 3. Simplified Python code for the controllable JUMPI analysis.

4.4 Detecting Controllable JUMPIs

In this section, we demonstrate that Greed can be easily tailored to novel secu-
rity analyses. To this end, we implement a novel analysis to detect controllable
JUMPI instructions – i.e., conditional JUMP instructions. A controllable JUMPI
allows an attacker to hijack the program counter, and thus take control of the
program execution. This vulnerability has been recently reported [37] in a highly
profitable MEV bot and could have resulted in hundreds of thousands of US dol-
lars of financial damage. We implement this analysis in 50 lines of Python code.
Figure 3 presents the core of our analysis script.

First, we (statically) inspect all contract statements to identify any JUMPI
instructions with a non-constant destination (target) addresses. This lightweight
analysis reduces the number of contracts in scope from 4.1M (all contracts with
distinct bytecode across Ethereum and BSC) to 1,141. We symbolically execute
these contracts and use directed search to reach the target statement. We add
additional constraints to enforce that (1) the guarding condition for the JUMPI
instruction is satisfied, and (2) the JUMPI destination is controllable. If our en-
gine reaches the JUMPI instruction and the two aforementioned constraints are
satisfied, we synthesize a concrete attack and verify it against a private fork
of the respective chain. We evaluate our analysis on all deployed contracts in
Ethereum and BSC and identify 134 and 256 previously unknown vulnerabili-
ties, respectively, as well as one known vulnerability [37]. We manually confirmed
that 130 of the 134 Ethereum contracts are still vulnerable at the time of writing
(block 22,279,016). Three of the contracts were vulnerable in the past but have
since been destructed and redeployed. One of the contracts contains an invalid
JUMPI destination derived from a memory operation that does not appear to be
controllable. We confirmed that all 256 BSC contracts are still vulnerable at the
time of writing (block 48,398,024). We reported all issues to the Cybersecurity
and Infrastructure Security Agency [9].
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1 pragma solidity ^0.8.0;
2
3 contract TradingBot {
4 // Public execute function lacking proper access control
5 function execute(address target , bytes calldata data) public {
6 // Forwards untrusted input to the target contract
7 target.call(data);
8 }
9 }

10
11 contract Token {
12 mapping(address => uint256) public balances;
13
14 // The transfer function deducts tokens based on msg.sender
15 function transfer(address recipient , uint256 amount) public {
16 [...]
17 }
18 }

Fig. 4. Simplified Solidity code of the TradingBot and Token contracts. The Trading-
Bot contract is vulnerable to a confused deputy attack.

5 Case Studies

In this section, we illustrate how Greed has been successfully applied to build
advanced program analysis systems for Ethereum smart contracts. We focus
on two representative case studies: (a) detecting confused deputy vulnerabilities
and (b) detecting storage collision vulnerabilities. Both studies leverage Greed’s
symbolic execution capabilities – augmented with domain-specific rules – to an-
alyze real-world contracts at scale and automatically generate proof-of-concept
exploits.

5.1 Detecting Confused Deputy Vulnerabilities

Confused deputy vulnerabilities occur when an attacker hijacks a smart con-
tract’s privileged operations via an inter-contract call (e.g., CALL) that is not
intended to handle untrusted input. This can lead to unauthorized actions such
as transferring assets or modifying critical state variables. For example, the
TradingBot contract in Figure 4 exposes a public execute function that for-
wards untrusted input directly to any target contract. As a result, an attacker
can craft a transaction that redirects this call to the Token contract’s transfer
function, effectively leveraging the TradingBot’s identity (and privileges) to ini-
tiate unauthorized asset transfers.
Implementation Overview. While we provide a high-level summary of the ap-
proach here, the complete system, Jackal, is detailed in a separate paper [22].
Jackal is built on top of Greed’s core symbolic execution engine and incorpo-
rates several analysis stages tailored to detecting confused deputy vulnerabilities:

– Confused Contract Discovery. Jackal leverages directed symbolic exe-
cution to inspect inter-contract calls where untrusted input might influence
(control) the target address or function selector. As a result, contracts with
controllable CALL instructions are flagged as confused contract “candidates.”



16 Ruaro et al.

1 pragma solidity ^0.8.0;
2
3 contract Proxy {
4 // Slot 0 -> implementation
5 address public implementation;
6 fallback () external payable {
7 implementation.delegatecall(msg.data);
8 }
9 }

10
11 contract Implementation {
12 // Slot 0 -> owner (collides with Proxy)
13 address public owner;
14 function setOwner(address _owner) public {
15 owner = _owner;
16 }
17 }

Fig. 5. Simplified Solidity code of the Proxy and Logic contracts. The interaction of
such contracts results in a storage collision.

– Target Contract Discovery. For each confused contract candidate, Jackal
examines historical blockchain transactions to identify interesting external
interactions and determines whether such interactions could lead to state
modifications (e.g., via SSTORE) that exploit the confused contract’s iden-
tity. When Jackal determines that an external interaction could lead to
the exploitation of the confused contract’s identity, the respective external
contract is flagged as a “target” contract.

– Exploit Generation. For each target contract, Jackal leverages Greed to
synthesize a transaction that forces the confused contract to invoke sensitive
functions in the target contract, thereby demonstrating the exploit. The
synthesized transaction is then replayed in a local blockchain simulator to
confirm that the attack does not unexpectedly revert.

Through these stages, Jackal enables end-to-end detection and exploitation
of confused deputy vulnerabilities. Jackal’s analysis of over 2.3 million smart
contracts identified 529 vulnerable instances and synthesized 31 working end-
to-end exploits. All 31 exploits have been manually verified, demonstrating that
attackers could potentially compromise digital assets valued at over one million
US dollars.

5.2 Detecting Storage Collision Vulnerabilities
Storage collision vulnerabilities arise in proxy-based architectures, where a “proxy”
contract delegates calls to separate “logic” contracts via the DELEGATECALL in-
struction. In this context, although the proxy and logic contracts execute inde-
pendently, they both share the same underlying persistent storage. As a result,
when the two contracts have conflicting interpretations of their storage slots,
they might inadvertently overwrite such slots with the wrong value. This allows
an attacker to overwrite privileged variables, potentially leading to unauthorized
access (privilege escalation) and loss of funds. For example, in Figure 5, the Proxy
contract reserves storage slot zero for its implementation variable. Instead, the
Implementation contract reserves the same storage slot for its owner variable.
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As a result, when the Proxy delegates a call (Line 6) to the Implementation’s
setOwner function, the owner value overwrites the implementation variable in
the Proxy contract, leading to a storage collision.
Implementation Overview. While we provide a high-level summary of the
approach here, the complete system, Crush, is presented in a separate paper [28].
Crush builds on Greed to automatically detect and exploit storage collision
vulnerabilities through the following analysis stages:

– Component Discovery. Crush analyzes on-chain transactions to identify
clusters of contracts – namely, proxies and their corresponding logic contracts
– that interact via DELEGATECALL.

– Collision Discovery. For each pair of proxy-logic contracts, Crush lever-
ages Greed to symbolically execute their bytecode and infer the type of
their storage variables. More precisely, after identifying all SLOAD and SSTORE
instructions, Crush leverages (1) Greed’s backward slice analysis to deter-
mine how each storage slot is computed and (2) Greed’s forward slice anal-
ysis to deduce the accessed byte ranges. Then, Crush compares the inferred
types of the proxy and logic contracts to detect collisions.

– Exploit Generation. Once a collision is detected, Crush verifies whether
an attacker can exploit it by writing to a critical slot in one contract and
reading it in another. To do this, Crush leverages Greed to synthesize
concrete transactions that demonstrate the exploit.

By leveraging Greed’s precise modeling of EVM instructions and storage
access patterns, Crush uncovered critical storage collision vulnerabilities. These
vulnerabilities could have led to serious incidents in practice: Crush’s analysis
of over 14 million smart contracts identified 14,891 vulnerable instances and
synthesized 956 working end-to-end exploits. All profitable exploits have been
manually verified, demonstrating that attackers could potentially compromise
digital assets valued at over 6 million US dollars.

6 Discussion and Limitations

Greed inevitably inherits some limitations that arise from our design choices.
First, we choose to build Greed directly on top of Gigahorse’s IR, rather than
extending an existing binary–analysis framework – such as angr [30]. This deci-
sion significantly simplifies our modeling of blockchain-specific concepts – e.g.,
blockchain state, transactions, persistent storage, cross-contract interactions.
However, it also implies that sophisticated analyses that already exist in other
frameworks, such as taint analysis, are not available out-of-the-box in Greed
and must be re-implemented. While this creates unfortunate duplication of ef-
fort in the short term, it ultimately enables a more flexible, extensible, and
research-friendly framework for smart contract security analysis.

Second, Greed’s reliance on Gigahorse’s intermediate representation (IR),
provides robust static analysis capabilities, but makes Greed’s effectiveness
partly dependent on Gigahorse’s accuracy. For example, inaccuracies such as
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missing JUMP destinations can cause pruning of paths that are in fact reachable.
In Section 4.3 we show that this occasionally happens in practice: For some
contracts, disabling pruning yields marginal coverage gains at the cost of a sharp
increase in memory usage. Although we limit this dependency to well-tested
features of Gigahorse (lifting, constant folding, and control-flow analysis), it
remains a potential source of inaccuracies.
Other Limitations. Beyond the limitations discussed above, Greed shares
modeling limitations common to similar symbolic execution systems. First, our
handling of gas costs is deliberately simplified and may potentially miss vul-
nerabilities that arise from gas-specific behaviors. Second, by default, Greed
employs a simplified handling of CALL instructions, which may miss vulnerabil-
ities that require symbolic modeling of contract interactions. Additionally, the
blockchain state (e.g., block number, timestamp, difficulty) remains symbolic by
default, although one can optionally constraint such a state to actual (concrete)
values when needed for more precise analysis. Addressing the aforementioned
limitations, including the modeling of gas costs and cross-contract interactions,
presents promising avenues for future research.

7 Related Work

Static Analysis. Early research in smart contract security focused on static
analysis of the source code. Tools such as SmartCheck [35] and Slither [17] de-
tect common vulnerabilities (e.g., re-entrancy, integer overflows) by scanning
Solidity source code using rule-based approaches, offering quick insights to de-
velopers. Their availability and ease of use lowered the barrier for preliminary
security audits. For example, Slither converts Solidity code into an intermediate
representation for detailed data-flow and control-flow analysis, providing both
vulnerability detection and potential code optimization insights.

In parallel, other efforts focused on direct analysis of EVM bytecode. Brent
et al. proposed Vandal [7] and Ethainter [6], two tools that perform control-
flow and data-flow analyses post-compilation, enabling insight even when source
code is unavailable. In a similar vein, Grech et al. proposed Gigahorse [20] and
Elipmoc [21] – a decompilation framework for EVM bytecode that also provides
several rule-based vulnerability analyses. However, these tools often rely on fixed
heuristics – such as rigid slicing rules or pattern matching – which may be
insufficient to fully capture complex state interactions during execution.
Formal Verification. To provide stronger correctness guarantees, researchers
have developed verification frameworks for smart contracts. For instance, Secu-
rify [36] operates on EVM bytecode and extracts predicates via a domain-specific
language to capture compliance and violation patterns. Similarly, eThor [29]
frames safety specifications in terms of reachability and uses an off-the-shelf
SMT solver to reason about property violations. On the Solidity side, VerX [27]
employs symbolic execution with induction and predicate abstraction to verify
safety properties across multiple transactions, while VeriSmart [32] focuses on
arithmetic safety through counterexample-guided invariant refinement. Extend-
ing these approaches further, Stephens et al. [33] incorporate liveness specifi-
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cations to broaden the range of verifiable properties. Although these methods
promise high-assurance security, they often incur significant engineering over-
head, limiting their widespread adoption.
Symbolic Execution. Symbolic execution has emerged as a powerful technique
for systematically exploring a contract’s execution paths. One of the pioneer-
ing systems in this area, Oyente [24], demonstrated that symbolically executing
EVM bytecode could effectively uncover vulnerabilities such as re-entrancy and
transaction-ordering dependence. Mythril [10] is a symbolic execution-based tool
that detects issues including integer overflows, unhandled exceptions, and un-
protected self-destruct instructions. Similarly, Teether [23] and Maian [26] also
leverage symbolic execution to identify vulnerable states. Manticore [25] and
EthBMC [18] further advanced the state-of-the-art by integrating precise mem-
ory models and supporting cross-contract analysis. Nonetheless, Manticore does
not integrate static analysis techniques – such as control-flow graph recovery or
program slicing – limiting its ability to dynamically target critical code regions.
Similarly, although EthBMC supports fully symbolic handling of cross-contract
calls and a precise memory model, its monolithic design enforces rigid explo-
ration strategies, making it difficult to extend to novel attack vectors.

In contrast to approaches that rely exclusively on static or dynamic meth-
ods, our framework Greed integrates static analyses (such as control-flow graph
recovery and program slicing) with a flexible suite of symbolic exploration strate-
gies – including directed search, loop limiting, state rewriting, and selective con-
cretization. This unified approach preserves the core advantages of existing sys-
tems while adapting more readily to novel attack vectors.

8 Conclusion
We introduce Greed, a versatile open-source symbolic execution framework for
EVM-based smart contracts. Greed addresses the limitations of existing tools
by providing a novel combination of analysis techniques, including both a state-
of-the-art SE engine and a suite of supporting analyses. Our experiments show
that Greed reaches significantly more (10x) CALL statements in a sample of (ran-
domly chosen) smart contracts. As a result, Greed enables more efficient path
exploration – and superior flexibility – without compromising on the accuracy of
the analysis. To demonstrate Greed’s flexibility and ease of use, we implement
a novel analysis to detect controllable JUMP instructions and evaluate it against
all contracts in Ethereum and BSC [3], identifying 390 previously unknown vul-
nerable contracts. By releasing Greed to the community, we aim to lower the
barrier to developing advanced security analyses for smart contracts, empowering
security researchers to contribute to a more secure blockchain ecosystem.
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