
AMPFUZZ: Fuzzing for Amplification DDoS Vulnerabilities

Johannes Krupp
CISPA Helmholtz Center for Information Security

Ilya Grishchenko⊛

University of California, Santa Barbara

Christian Rossow
CISPA Helmholtz Center for Information Security

Abstract
Amplification DDoS attacks remain a prevalent and severe
threat to the Internet, with recent attacks reaching the Tbps
range. However, all amplification attack vectors known to date
were either found by researchers through laborious manual
analysis or could only be identified postmortem following
large attacks. Ideally, though, an attack vector is discovered
and mitigated before the first attack can occur.

To this end, we present AMPFUZZ, the first systematic ap-
proach to finding amplification vectors in UDP services in
a protocol-agnostic way. AMPFUZZ is based on the state-
of-the-art greybox fuzzing boosted by a novel technique to
make fuzzing UDP-aware, which significantly increases per-
formance. We evaluate AMPFUZZ on 28 Debian network
services, where we (re-)discover 7 known and 6 previously
unreported amplification vulnerabilities.

⊛The author contributed while being employed at CISPA.

1 Introduction

For many years, amplification Distributed Denial-of-Service
(DDoS) attacks [74] constitute the most powerful volumetric
DDoS strategy. These attacks abuse the fact that several UDP-
based network services do not (or cannot, without changing
decades-old protocols) verify client IP addresses. An attacker
can turn such vulnerable services into attack traffic ampli-
fiers by sending them forged requests under their victim’s
identity. Being unable to verify the request origin, these ser-
vices unwittingly flood the victim with their (unsolicited)
answers. Past attacks temporarily disrupted core Internet ser-
vices, such as Paypal, Spotify, Twitter, Reddit, and eBay, with
recent attacks in 2021 peaking at more than 2.4 Tbps attack
bandwidth [22, 26, 45, 60].

Every time an amplification vector is discovered, we ob-
serve record-breaking attacks abusing the new vulnerability.
For example, only shortly after an amplification vector was
found in Memcached (a distributed memory-caching system),

attackers abused its massive potential [23]. Similarly, the dis-
covery of amplification vectors in RIPv1 [4] has quickly led
to a stark increase in amplification abuses of this protocol [17].
Surprisingly, while there are automated approaches to finding
variants of known vulnerabilities and estimating their amplifi-
cation potential [59], we lack any automation in discovering
new amplification vectors. To date, amplification vulnerability
search is a largely manual effort, typically driven by attacker
groups in search for unknown and thus unfiltered amplifica-
tion vectors for which no mitigation strategies exist. Worse,
new vulnerabilities quickly gain wide popularity among fel-
low attackers [62]. Consequently, defenders lag behind and
mostly react. Any future amplification vulnerability will over
and over trigger gigantic DDoS patterns for which network
operators and anti-DDoS services are not well prepared.

There are strong incentives to automate vulnerability
search. First, early discovery allows safeguarding protocols
and their implementations against known amplification vec-
tors as early as possible—ideally before their abuse. There
are several success stories in which implementation changes
or large-scale disclosure operations have massively reduced
the number of vulnerable services [50, 85]. Second, early
knowledge of vulnerabilities allows monitoring active ex-
ploitation in amplification attacks with the help of amplifica-
tion DDoS honeypots [44,82]. Third, anti-DDoS services can
ingest novel attack vectors in automated defense systems that
filter attack traffic before attack abuse. This would be a game-
changer to the reactive, defensive situation and give defenders
sufficient heads-up to create proactive defense strategies.

Unfortunately, although there is rich literature on discov-
ering other types of software vulnerabilities, amplification
represents a bug class on its own. In fact, searching for am-
plification vulnerabilities raises several challenges. First and
foremost, there is a plethora of network protocols and imple-
mentations thereof, for only few of which there exists a formal
specification of protocol states and message formats. In other
words, we deal with unknown protocols for which we cannot
assume a priori knowledge. The UDP stack brings additional
challenges, as one has to decide (i) when a service is in a state

in which it can react to requests, and (ii) when a service has
finished processing a request, both of which are not readily
observable to the outside world. Finally, amplification vulner-
abilities have an inherent notion of severity: their utility to an
attacker is quantified by the maximal request-response ratio.
This makes them different from other bug classes. While for
program crashes we are only interested in whether a certain
request type does trigger a crash or not, in the case of amplifi-
cation vulnerabilities we are further interested in maximizing
the amplification per request type.

In this paper, we provide the first principled, protocol-
agnostic approach to revealing new amplification vulnera-
bilities in network services. We propose a greybox fuzzer that
aims to discover network requests that result in significantly
larger responses. We overcome the challenges above by using
a directed fuzzer that prioritizes paths leading to sending func-
tions (e.g., sendto), which we extend with UDP-awareness.
To this end, we combine static analysis with lightweight in-
strumentation to notify the fuzzer when the program expects
input. In many cases, these techniques also enable us to proac-
tively terminate fuzzing executions that generate no output
instead of relying on expensive timeouts. Finally, two simple
yet effective mutation strategies maximize the amplification
factor of potential vulnerabilities.

As another application of AMPFUZZ, we extend its pipeline
to provide the necessary means to monitor amplification abuse
in an automated way through DDoS honeypots. Until now,
amplification DDoS honeypots solely rely on experts who
have to craft protocol-specific replies to attacker probes by
hand. We expand our methodology to synthesize request han-
dler routines for the identified vulnerabilities, which can be
plugged into amplification honeypots. We automate this pro-
cess by leveraging symbolic execution to generate path con-
straints and output expressions for each discovered vulner-
ability. These can then be used to match probing requests
received by the honeypot and to select replies that attackers
find attractive. We can thereby automate the entire process
from scanning a service for amplification vulnerabilities to
creating honeypots that emulate the discovered behavior.

Summarizing, we provide the following contributions:

• We present AMPFUZZ, the first systematic and protocol-
agnostic approach to discover amplification vulnera-
bilities in network services based on directed greybox
fuzzing.

• We introduce the novel concept of UDP-awareness pro-
viding a significant improvement in the fuzzing perfor-
mance of AMPFUZZ.

• We evaluate our open-source1 implementation of AMP-
FUZZ on 28 services from the Debian repositories. AMP-
FUZZ identifies 19 implementations as vulnerable, re-
vealing 6 previously undetected amplification vectors.

1The code of AMPFUZZ, along with all the evaluation artifacts, are pub-
licly available at https://github.com/amp-fuzz/AmpFuzz

2 Background

We first briefly introduce the general concepts of fuzzing,
amplification DDoS attacks, and amplification vulnerabilities.

2.1 Fuzzing
Fuzzing has become a popular technique to find software
vulnerabilities [57]. Originating from the area of software
testing, the key idea is to run a System under Test (SuT)
under a vast number of random inputs while monitoring it
for abnormal behavior. While commonly used to check for
crashes, fuzzing has also been applied to finding performance
issues [52,69] or unexpectedly large memory allocations [65].

Blackbox fuzzers generate inputs purely at random and are
oblivious to the SuT’s inner workings. This allows them to
test many inputs quickly, but generally fails on programs that
require structured input. Contrarily, whitebox fuzzers [18, 38]
try to gain insights into the SuT via static program analysis.
For instance, this may entail executing the program symboli-
cally to find constraints on the input for the currently taken
path. By partially inverting the constraints, new input that
explore previously untaken paths can then be generated us-
ing a constraint solver. This enables whitebox fuzzing also to
reach “deep” parts of the code that cannot be explored through
blackbox fuzzing. However, the heavy runtime overhead for
symbolic execution, combined with the path explosion prob-
lem and insufficient library support, renders whitebox fuzzing
impractical for many use cases.

Consequently, the most adopted approach is (guided) grey-
box fuzzing [16, 20, 32, 58] aiming at the sweet spot between
the strategies above. Greybox fuzzing augments the scala-
bility of blackbox fuzzing with runtime feedback obtained
through lightweight program instrumentation. This runtime
feedback is then used to guide the input generation, either
towards increasing general code coverage [20,72,87] or reach-
ing specific points in the program [19, 21, 33, 36, 78, 86, 89].

2.2 Amplification Attacks
Amplification attacks [74] are the predominant type of vol-
umetric Distributed Denial-of-Service (DDoS) attacks, with
tens of thousands of amplification attacks per day continu-
ously threatening the availability of essential network ser-
vices [44]. As depicted in Figure 1, in such an attack, to
attack their victims, the attackers abuse amplifiers, i.e., inno-
cent services that suffer from amplification vulnerabilities.
In particular, these amplifiers will send our large responses
without verifying the requests’ source addresses. The attacker
will hence craft requests carrying the victim’s address as the
claimed source address. In turn, the vulnerable services will
send their responses with no ill intent towards the victim, thus
flooding it with unsolicited traffic. By focusing on services
with a substantial response-request ratio, the attack bandwidth

https://github.com/amp-fuzz/AmpFuzz

Attacker Victim

vulnerable
Amplifiers

spoofed
requests

large
responses

Figure 1: Amplification attack

arriving at the victim can be orders of magnitude larger than
the bandwidth that has to be invested by the attacker.

2.3 Amplification Vulnerabilities
Barring a few exceptions [15, 51] all known amplification
vulnerabilities are located in UDP-based protocols, including
widely-used ones such as DNS, NTP, or SNMP [74]. Fortu-
nately, once discovered, these vulnerabilities can be mitigated.
For instance, the monlist debugging feature in the Network
Time Protocol (NTP) [5] allowed amplifying traffic by up to
4,670×. After its discovery, Kührer et al. coordinated vul-
nerability disclosure, leading to a reduction of the vulnerable
systems by 92% within just 10 weeks [50]. Similarly, the
amplification potential in DNS was significantly mitigated by
widescale deployment of rate limiting and message trunca-
tion [85], or by disabling non-critical features [8, 24].

However, to date, we lack a systematic way of finding am-
plification vectors. Dissimilar to other security vulnerabilities
like memory corruption errors, they do not cause crashes or
lead to anomalous software behavior. Instead, most amplifi-
cation vectors rely on intended protocol or implementation
features. As such, they resemble an entirely new bug class
that fuzzers and other analysis tools have never been applied
to and which come with unique challenges.

3 Fuzzing for Amplification

In this paper, we thus aim to adopt fuzzing to the domain of
amplification vulnerabilities. Specifically, our goal is to find
reasonably small UDP requests that trigger larger (amplifying)
responses from a given network daemon.

3.1 Amplification Fuzzing Challenges
Several challenges hinder the plug-and-play utilization of
existing fuzzers to discover amplification vulnerabilities. We
will outline these challenges in the following and relate to
how we tackle them in the subsequent sections.

Lack of Protocol Knowledge Network protocol fuzzing
is challenging per se, as each protocol comes with its own

formats, syntax, and features. While past research on network
fuzzing has focused on generative approaches that provide the
fuzzer with a protocol specification from which it attempts to
generate requests, this approach has severe limitations. Firstly,
it requires knowledge and a formal description of the target’s
protocol. More importantly, though, it restricts the fuzzer
to requests closely matching the said protocol. Yet many
of the known amplification vectors rely on either custom,
implementation-specific extensions (e.g., NTP monlist [6])
or exploit the target’s handling of malformed requests (e.g.,
WS-Discovery [73]). To find such cases, we thus do not want
to assume any a priori knowledge of the fuzzing targets.

Lack of UDP State UDP network daemons are further chal-
lenging targets for fuzzing, as it is non-obvious when the dae-
mon under test has finished processing a request. They will
often silently discard invalid requests, providing no feedback
to the fuzzer. And even if the network daemons respond to
the fuzzer, it remains unclear whether further packets will fol-
low. A similar situation occurs during the daemon startup: At
which point is it ready to accept requests from the fuzzer? A
request sent too early will be dropped by the network layer, re-
sulting in an ICMP unreachable packet at best. This problem
is exacerbated by the fact that UDP is a connectionless proto-
col, such that even on the network layer, there is no notion of
a failed or terminated connection. While timeouts can address
both startup and response delays—the de facto workaround
used in the literature, e.g., [30]—this solution is suboptimal,
as the actual processing time depends on both the target and
the current request. Static timeouts will thus unnecessarily
slow down fuzzing for some targets while terminating others
prematurely.

Unexplored Vulnerability Class Lastly, amplification vul-
nerabilities inherently differ from other classical bug classes.
While a request triggering a program crash unequivocally
indicates a bug, not every request leading to a response con-
stitutes an amplification vector. Instead, whether or not a
request can be leveraged for amplification depends on the
request-response size ratio. To accurately identify a target’s
amplification potential, the fuzzer must thus also be able to
explore request variants to maximize this ratio—by either
decreasing the request or increasing the response size.

3.2 Design Overview
We tackle the challenges mentioned above with AMPFUZZ, as
shown in Figure 2. We base AMPFUZZ on the overall fuzzing
pipeline of ParmeSan [89], a directed fuzzing extension of
the mutation-based greybox fuzzer Angora [20], which con-
sists of three main components: a static analyzer, a program
instrumentor, and the actual fuzzer.

In a pre-processing step, the static analyzer extracts a
control-flow graph (CFG) and a list of interesting target lo-

CFG

Targets

Program

Fuzzer
Analyzer

Instrumentor

61d0 fde4 486b d82e
7874 7cc3 1348 f947
a865 69a2 59c1 4d62
9515 0b72

Amplifications

AmpFuzz

Track Binary

Fast Binary

Figure 2: AmpFuzz outline

cations to guide the fuzzer to. The program instrumentor
generates two instrumented versions of the service under test.
The first one, including only a lightweight coverage collection,
allows the fuzzer to quickly test whether a new input reaches
new and undiscovered parts of the program. The second ver-
sion, yet considerably slower version including a dataflow
analysis framework, can then be run on only those inputs
selectively to provide additional information about which
input bytes are relevant for branching decisions. The fuzzer fi-
nally uses the extracted CFG and the list of target locations to
prioritize fuzzing inputs and the feedback from the dataflow-
instrumented binary to inform its mutation operators.

For AMPFUZZ, we modify and extend all three parts of this
pipeline to address the challenges mentioned above.

3.3 Protocol-Agnostic Fuzzing
To fuzz a service for amplification vulnerabilities without a
specification of its protocol, we build on the directed fuzzing
capabilities of ParmeSan [89] and the dataflow analysis of
Angora [20]. Specifically, we collect all calls to network func-
tions that send out packets as targets during the static analysis
phase. By guiding the fuzzer to these locations, we directly
focus on requests that trigger responses. Moreover, we ex-
tend the dataflow analysis to recognize network functions
that receive packets as taint sources. Together with the byte-
level taint-tracking, the fuzzer can perform targeted mutations
of the inputs, eventually producing requests that are “valid”
enough to generate responses.

3.4 UDP-Aware Fuzzing
To help AMPFUZZ decide when the target is ready to accept
requests and when the processing of a request has concluded,
we add additional lightweight instrumentation to the SuT,
which aims to make these events observable to the fuzzer.
To this end, we classify network functions into three groups,
as shown in Table 1. We define all functions that receive a
packet as sources, all functions that send out a packet as sinks,
and all functions that can block execution while waiting for a
packet as blocking functions.

Table 1: Network function classification
Class Functions

Source recv, recvfrom, recvmsg, recvmmsg
Sink send, sendfrom, sendmsg, sendmmsg
Blocking select, pselect, poll, ppoll,

epoll_wait, epoll_pwait

Beginning of Request Processing We can ascertain that
the SuT is ready to accept requests whenever it attempts to
read or wait for a packet from the network, i.e., whenever a
function from the source or blocking category is called on a
UDP socket bound to the current fuzzing port. Thus, we can
communicate this to the fuzzer (e.g., through a shared mem-
ory semaphore) by hooking all calls to functions from those
categories and inspecting the state of the passed socket. As a
socket’s listening state and port can be obtained at runtime,
no extra socket accounting mechanism is required.

End of Request Processing Unfortunately, determining
when request handling is completed is not as straightfor-
ward as it requires reasoning about the SuT’s future execution
traces. Essentially we need to answer the question "Can this
program still reach a sink without calling a source or block-
ing?". For multithreaded programs, in particular, this is a
non-trivial property.

However, we can build a partial solution by considering
each thread of a program individually: If, after a request has
been received, the current thread is blocked at a source or
blocking function called on the fuzzing socket, then this thread
cannot yield a response to the original request. In those cases,
we can safely terminate the current thread instead. Terminat-
ing only the current thread but not the entire SuT ensures that
request handling in other threads can still proceed. Yet, as
long as all threads eventually exit independently or can be
early terminated, the fuzzer can observe that the entire SuT
process has finished and proceed with the next round.

We can again implement this approach by hooking all calls
to source and blocking functions and inspecting the socket
argument. However, we can also further aid this approach
with a simple static analysis and instrumentation that injects
additional “check-and-terminate” calls into the program. This
is particularly helpful in cases where the SuT still performs
expensive computations or I/O operations before accepting
the subsequent request, like adding lines to a logfile. To find
these “check-and-terminate” edges, we first need to establish
which (strict) basic blocks can reach a sink function before a
source function. We will call those basic blocks sink-capable.
Specifically, sink-capable are basic blocks that

1 call a sink function (e.g., send node in handle),

2 do not call a source function and have at least one sink-

capable successor (e.g., if node in handle and node
with a call to handle in main).

We can compute the set of sink-capable basic blocks using
a fixed-point iteration pass over the targets’ inter-procedural
CFG. Undecided basic blocks after this fixed-point iteration
are non-sink-capable. They can only remain undecided as part
of a loop without outgoing edges to sink-capable basic blocks.
To ensure that we do not terminate the SuT prematurely in the
presence of dynamic calls or calls to shared libraries, we over-
approximate function calls that cannot be analyzed statically
as sink-capable. We can then add our check-and-terminate
functionality to all edges leading from a sink-capable basic
block to a non-sink-capable basic block.

Figure 3 shows this approach on an example service fol-
lowing a structure commonly observed in network daemons:
After performing some initialization (init), e.g., obtaining
a socket, the main function enters a while-loop that continu-
ously waits for incoming packets (source recv) and invokes
a handler function handle on every request. The handler
handle checks the request (if) and either proceeds with
a reply (sink send) or goes straight to logging the request
(log_request) before returning (return). Following the
rules above, we inject additional check-and-terminate calls
into those edges marked in red (→).

send

sink

init

while

main

if

return

handle

edge with injected check-and-
terminate functionality

Instrumentor

handle

recv

dummy

1

2

2

source

M sink-capable of
type M {1,2}

log_request

Figure 3: High-level example of our static analysis execution

3.5 Amplification Feedback and Optimization
Our protocol-agnostic and UDP-aware fuzzing measures en-
able AMPFUZZ to search for requests that generate responses
efficiently. To focus on amplification vectors, we must further
enable the fuzzer to maximize the ratio between request and
response sizes. To this end, we build upon the bandwidth
amplification factor (BAF) as defined by Rossow [74]:

BAF =
len(UDP payload amplifier to victim)

len(UDP payload attacker to amplifier)

However, to correctly handle services that reply to zero-length
packets or send multiple packets, we chose to also include

the upper protocol headers up to the Ethernet layer in the
computation. That is, we assume an extra 8 bytes for the
UDP header, 20 bytes for the IP header, and 18 bytes for the
Ethernet header and trailer, as well as a minimum payload
size of 46 bytes for the Ethernet frame, and take the sum of
all response packets:

lenL2(x) = 18+max(46,20+8+ len(x))

BAFL2 =
∑ lenL2(UDP payload fuzz output)

lenL2(UDP payload fuzz input)

In classical mutation-based fuzzing, fuzz inputs are
recorded as new seeds for a subsequent mutation if they in-
crease coverage, i.e., exercise new paths of the program. For
AMPFUZZ, we further record inputs that increase the amplifi-
cation factor, globally or locally for their path. We explicitly
include inputs with a BAFL2 ≤ 1 (i.e., no amplification), since
subsequent mutations might lead to inputs with a BAFL2 > 1
for the same path. By keeping a separate maximum ampli-
fication ratio per path, we can find high-BAF requests for
different vectors of the same target independently.

Amplification Maximization The amplification factor can
be increased in two ways: modifying the request to lead to
larger responses or finding shorter requests that result in the
same response. In AMPFUZZ, we implement both strategies.

First, we leverage Angora’s dataflow analysis to iden-
tify which input bytes influence the length of the response
packets—concretely the length argument of a sending
function—and then prioritize generating new inputs that mu-
tate those bytes in particular.

Second, we add a simple yet effective mutation operator:
Once the fuzzer finds a valid request, we generate further
request candidates by stripping off bytes from the end of the
request one by one. This is helpful as many network protocols
(or their implementations) ignore trailing bytes or implicitly
pad network packets with NUL-bytes.

3.6 Implementation
We implement AMPFUZZ on top of ParmeSan [89] and An-
gora [20]. As we implemented the analyzer and instrumentor
components as LLVM passes, we use wllvm [3] to compile
whole programs to single bitcode files. To enable UDP-aware
fuzzing, we extend ParmeSan’s instrumentor with our static
analysis discussed in Section 3.4.

Furthermore, as AMPFUZZ aims at amplification discovery
in widespread daemon services, we add support for three es-
sential features not handled by ParmeSan. Firstly, we extend
the original dataflow tracking mechanism to shared libraries
and dynamically loaded code (e.g., plugin systems) used by
the daemons extensively. Specifically, we provide a unique
branch-ID seed for every object file during instrumentation
and hook dlsym and dlopen functionalities to load CFGs

for libraries dynamically. As a result, AMPFUZZ can track
input dependencies even for branch checks inside libraries,
ultimately discovering amplifications at speed in cases where
the original approach had to resort to randomized input gener-
ation. Secondly, we add handling of fork by always follow-
ing the child. This works for several cases in our evaluation,
supporting our assumption that fork is often used to spawn
request handlers. Lastly, we implement a wrapper library for
inetd services such as in.tftpd, as these expect to find the
UDP socket as their stdin and stdout.

4 Evaluation

We evaluate AMPFUZZ in various settings to show its efficacy
in finding amplification attack vectors in general and the ben-
efits of our approaches to UDP awareness and amplification
maximization. In particular, we seek to answer the following
research questions:

4.1 Research Questions
RQ1 Can AMPFUZZ successfully find amplification attack

vectors with no a priori information about the target
service? To this end, we run AMPFUZZ on a set of
targets, including known-vulnerable services.

RQ2 Does UDP-aware fuzzing help to find vulnerabilities
faster than with the de-facto standard use of static time-
outs? Here we compare the time it takes AMPFUZZ to
find the first amplification vector between a UDP-aware
configuration and multiple static timeout values.

RQ3 Do our approaches to amplification maximization
yield higher amplification factors than purely coverage
guided network fuzzing? For this, we compare the max-
imum BAFL2 achieved by AMPFUZZ with and without
amplification maximization enabled.

4.2 Fuzz Target Selection and On-Boarding
To find suitable targets, namely UDP-based network services,
we leveraged the SELinux reference policy [2]. We search
for programs requesting permission to open and handle UDP
ports (SELinux labels corenet_udp_*), which we then cross-
referenced with the Debian package database [1]. Filtering for
packages that we could successfully rebuild using Clang—a
technical requirement for our LLVM-based instrumentation—
left us with 71 candidate services over 61 packages. From
these, we selected 20 services (18 packages), shown in Ta-
ble 3, Appendix A, including several with previously reported
amplification vulnerabilities (e.g., NTP version, memcached
stats, and (x)inetd CharGen). While we were unable to suc-
cessfully instrument the popular DNS implementations bind
and dnsmasq, we included knotd and stubby instead.

For each target, we manually determined the minimal re-
quired command-line arguments and configuration files. We
verified that they opened a listening UDP socket and can run
inside an unprivileged Docker container. Some programs pro-
vide different services on multiple ports. Our final selection
comprises 28 targets.

4.3 Experimental Setup
We fuzzed each target inside a target-specific docker image
built on top of the official debian:bullseye base image2.
For each run, the fuzzer was provided only the single byte
seed "a". For UDP-aware runs, the fallback timeout was set
to 500ms for both begin and end of request processing. To
reduce noise in the results through randomness [43], fuzzing
campaigns were repeated 5 times per target and setup. We
performed all experiments on a server with 2 Intel® Xeon®
Gold 6230N processors and 512 GB of RAM.

4.4 (RQ1) Efficacy of Fuzzing for Amplifica-
tion Vulnerabilities

To assess the efficacy of finding amplification vectors through
fuzzing, we ran AMPFUZZ on each target for 24 hours. The
results are shown in Table 2. For each target for which at least
one request-response pair could be found, we report maximum
Ethernet bandwidth amplification factor (max(BAFL2)) and
the “naive” UDP payload amplification factor (max(BAFL7))
for comparison, best lists the maximum value over all 5 runs,
while mean and std denote the mean and standard deviation.

Overall, we find that AMPFUZZ is able to discover true
amplification (BAFL2 > 1) in 13 and reflection vulnerabili-
ties (BAFL2 = 1) in 6 of the 28 tested targets.

Protocols with known amplification vectors Our dataset
contains 12 targets implementing protocols for which ampli-
fication vulnerabilities have previously been found through
manual analysis, namely CharGen (19), DNS (53), TFTP (69),
SSDP (1900), and memcached (11211). On these, AMPFUZZ
manages to find 7 amplifications and 3 reflections. We inves-
tigated the cases in which AMPFUZZ fails to find expected
amplifications: For chronyd, no NTP-based amplification
can be found as chrony deliberately lacks support for NTP
mode 6 control messages and mode 7 extensions. Likewise,
minissdpd does not respond to M-SEARCH requests in the
given configuration and is hence invulnerable to the known
SSDP amplification vector. The CharGen implementation of
openbsd-inetd inetd cannot be triggered in our evaluation
setup, as openbsd-inetd ignores requests to the loopback inter-
face. After manually removing this check from the openbsd-
inetd source code AMPFUZZ succeeds in finding the expected
amplification. Lastly, the known DNS amplification vector

2Digest 6f4986d78878

Table 2: 24h Fuzzing Campaign Results, each experiment was repeated 5 times. Novel vulnerabilities are highlighted.

target port # paths # requests # amps max(BAFL2) max(BAFL7)
best mean

±std best mean
±std best mean

±std best mean
±std best mean

±std

(atftpd) atftpd 69 11582 7819.0
±3479.7 91 70.6

±15.1 47 38.0
±7.2 3.63 3.27

±0.44 10.00 7.68
±2.14

(atftpd) in.tftpd 69 50 46.8
±2.8 6 6.0

±0.0 5 5.0
±0.0 1.14 1.14

±0.0 27.00 27.0
±0.0

(chrony) chronyd 123 106 71.8
±25.0 8 6.2

±1.8 - 1.00 1.0
±0.0 1.00 1.0

±0.0

323 243 234.0
±7.7 6 6.0

±0.0 - 1.00 1.0
±0.0 1.00 1.0

±0.0

(knot) knotd 53 201 152.4
±31.6 99 57.8

±28.8 - 1.00 1.0
±0.0 1.00 1.0

±0.0

(krb5-admin-server) kadmind 464 469 451.0
±12.2 92 78.0

±10.5 92 78.0
±10.5 2.91 2.86

±0.09 8.75 8.02
±1.13

(memcached) memcached 11211 370 326.2
±44.1 41 30.0

±8.0 33 14.0
±14.1 32.45 14.82

±16.13 129.07 52.96
±69.48

(ntp) ntpd 123 1324 1039.2
±289.5 329 234.0

±67.5 20 14.2
±3.8 7.47 7.47

±0.0 36.00 36.0
±0.0

(ntpsec) ntpd 123 1427 809.8
±455.6 244 181.8

±59.4 10 6.0
±2.8 7.28 7.28

±0.0 35.00 32.81
±4.38

(openafs-fileserver) bosserver 7007 1054 853.6
±209.5 259 219.6

±57.0 212 152.4
±55.9 4.59 4.59

±0.0 9.75 9.75
±0.0

(stubby) stubby 53 2 2.0
±0.0 1 1.0

±0.0 - 1.00 1.0
±0.0 ∞

(talkd) in.ntalkd 518 44 41.4
±2.2 22 20.0

±1.9 1 1.0
±0.0 1.09 1.09

±0.0 24.00 24.0
±0.0

(talkd) in.talkd 517 44 41.6
±2.6 22 19.6

±1.8 1 1.0
±0.0 1.09 1.09

±0.0 24.00 24.0
±0.0

(tftpd) in.tftpd 69 1297 980.2
±272.9 28 23.6

±2.7 22 20.2
±1.3 1.14 1.14

±0.0 13.50 13.5
±0.0

(xinetd) xinetd 7 3 3.0
±0.0 1 1.0

±0.0 - 1.00 1.0
±0.0 1.00 1.0

±0.0

13 6 6.0
±0.0 1 1.0

±0.0 1 1.0
±0.0 1.12 1.12

±0.0 ∞

19 3 3.0
±0.0 1 1.0

±0.0 1 1.0
±0.0 16.72 16.72

±0.0 ∞

37 3 3.0
±0.0 1 1.0

±0.0 - 1.00 1.0
±0.0 ∞

(xl2tpd) xl2tpd 1701 164 83.2
±59.2 75 35.2

±30.2 10 2.4
±4.3 3.52 2.19

±1.15 5.81 3.21
±2.49

(implementations knotd and stubby) utilizes ANY requests
for a domain with large DNS records. As such, it not only
requires the resolver (i.e., the target) to be able to perform
upstream queries (which we had disabled in our test setup),
but also knowledge of a valid domain with active records.

Novel amplification vectors AMPFUZZ also discovers 9
previously unknown reflection and amplification vulnerabil-
ities. Next to the trivial reflections in the legacy echo (7),
daytime (13), time (37) and talk (517)/ntalk(518) protocols,
these also include non-trivial reflections in control protocol
of chronyd (323) and amplifications in the Kerberos adminis-
tration server kadmind, the OpenAFS Basic OverSeer server
bosserver (see Section 4.7), and in the layer 2 tunneling
protocol [83] implementation xl2tpd.

Estimating individual vulnerabilities To quantify the
number of distinct amplification vectors per target, we not
only report the number of unique program traces (# paths).
We also count the number of distinct request handling be-
haviors, both overall (# requests) and for requests leading to
amplification (# amps). For this, we leverage data collected
by the dataflow framework during fuzzing, from which we
extract the set of all request-dependent CFG edges for each
input. That way, two requests that exercise different parts

of the target are counted individually, while requests whose
traces differ only in the iteration count of a loop or similar are
only counted as one. For example, atftpd uses a nested loop
structure to tokenize and parse request options, resulting in a
large number of possible execution paths. Yet, as further re-
quest handling only depends on which options were specified,
the number of distinct request types is much lower.

Interestingly, many targets amplify traffic for multi-
ple request types, i.e., offer multiple amplification vectors.
This further highlights the need for systematic discovery
of amplification vectors as simple defenses blocking only
fixed request patterns may be incomplete.

We manually investigated cases where only a small number
of paths were discovered during fuzzing: As we limit outgoing
connections, stubby, a DNS stub resolver, always replies with
SERVFAIL, irregardless of the query. For xinetd, we find that
the built-in services have very low complexity, with only one
or two branches during request handling. On these, AMPFUZZ
thus quickly achieves full path-coverage.

4.5 (RQ2) Impact of UDP-aware fuzzing

To evaluate whether UDP-aware fuzzing leads to faster find-
ings than using de-facto standard static timeouts, we per-
formed additional experiments running AMPFUZZ on all fuzz

0
10

0

10
1

10
2

10
3

Ti
m

e
to

 fi
rs

t
re

sp
on

se
 (s

)

atftpd:69
(atftpd)

in.tftpd:69
(atftpd)

chronyd:123
(chrony)

chronyd:323
(chrony)

knotd:53
(knot)

kadmind:464
(krb5-admin-server)

memcached:11211
(memcached)

0
10

0

10
1

10
2

10
3

Ti
m

e
to

 fi
rs

t
re

sp
on

se
 (s

)

ntpd:123
(ntp)

ntpd:123
(ntpsec)

bosserver:7007
(openafs-fileserver)

stubby:53
(stubby)

in.ntalkd:518
(talkd)

0% 50% 100%
Percentage of Runs

in.talkd:517
(talkd)

0% 50% 100%
Percentage of Runs

in.tftpd:69
(tftpd)

0% 50% 100%
Percentage of Runs

0
10

0

10
1

10
2

10
3

Ti
m

e
to

 fi
rs

t
re

sp
on

se
 (s

)

xinetd:7
(xinetd)

0% 50% 100%
Percentage of Runs

xinetd:13
(xinetd)

0% 50% 100%
Percentage of Runs

xinetd:19
(xinetd)

0% 50% 100%
Percentage of Runs

xinetd:37
(xinetd)

0% 50% 100%
Percentage of Runs

xl2tpd:1701
(xl2tpd)

static 10ms static 50ms static 100ms static 500ms static 1s UDP aware 500ms

Figure 4: Time to first response for UDP-aware fuzzing vs. static timeouts (lower is better)

targets for one hour in six different configurations: UDP aware
(with a default timeout of 500ms) and static timeouts of 10,
50, 100, 500, and 1000ms.

Figure 4 shows the time until our fuzzer found the first
request-response pair over the experiment repetitions. As al-
ready hypothesized in Section 3.4, the optimal static time-
out varies between services. For example, on knotd a static
timeout of 50ms shows the best performance while the same
timeout fails to find any responses on xinetd. On the other
hand, while the fuzzer found request-response pair success-
fully with a large timeout of 1000ms, it slows down fuzzing
by multiple orders of magnitude. In contrast, in almost all
cases, UDP-aware fuzzing performs as well as or better
than the best performing static timeout.

We manually analyzed the two exceptions to this, knot and
memcached. In both cases, our approach to detect the end of
request processing fails to entirely terminate the target due to
other active background threads (e.g., for garbage collection
in the case of memcached).

4.6 (RQ3) Amplification Maximization

Lastly, we performed additional experiments to measure the
impact of our amplification maximization efforts as described
in Section 3.5. For this, we ran AMPFUZZ on all fuzz targets
in two configurations, once with and once without amplifi-
cation maximization, and measured the maximum Ethernet
amplification factor that was found after one hour, the results
of which are shown in Figure 5.

Surprisingly, it appears that purely coverage-based guid-

ance is already sufficient for some targets to find maximal
amplification requests, since new request types also lead to
new coverage. Further, by foregoing amplification maximiza-
tion, more time can be spent on exploring new coverage. Yet,
in almost all cases, amplification maximization allowed AMP-
FUZZ to find an equally large or larger maximum amplifica-
tion factor after one hour. This holds true in particular for
memcached and bosserver, where the BAF can be increased
by reducing the request size without providing new cover-
age. Thus, allocating some time-budget to amplification-
maximizing queries provides a net benefit overall.

4.7 Case Study: openafs bosserver

AMPFUZZ identifies a new amplification vector in the Basic
OverSeer (BOS) Server of the OpenAFS distributed filesys-
tem. This server is responsible for monitoring other processes
of the AFS filesystem and offers a UDP interface on port
7007. The protocol employed by the BOS server uses packets
with a fixed-size 28-byte header followed by a variable-length
payload (shown in Listing 1).

Packets of type RX_PACKET_TYPE_DEBUG and with the
RX_CLIENT_INITIATED flag set can be used to query for de-
bugging packets. Setting payload type RX_DEBUGI_RXSTATS
further specifies a communication statistics query, which pro-
duces a 312 bytes response.

AMPFUZZ can find all of these constraints through its
dataflow-assisted fuzzing. Furthermore, our added muta-
tion operator, which shortens the request, allows AMP-
FUZZ to generate requests that omit the last four bytes

0

1

2

3

m
ax

(B
AF

L2
)

atftpd:69
(atftpd)

0.0

0.5

1.0

in.tftpd:69
(atftpd)

0

2

4

6

memcached:11211
(memcached)

0

2

4

6

ntpd:123
(ntp)

0% 50% 100%
Percentage of Runs

0

2

4

6

ntpd:123
(ntpsec)

0% 50% 100%
Percentage of Runs

0

2

4

bosserver:7007
(openafs-fileserver)

0% 50% 100%
Percentage of Runs

0.00

0.25

0.50

0.75

1.00

in.ntalkd:518
(talkd)

0% 50% 100%
Percentage of Runs

0.00

0.25

0.50

0.75

1.00

m
ax

(B
AF

L2
)

in.talkd:517
(talkd)

0% 50% 100%
Percentage of Runs

0.0

0.5

1.0

in.tftpd:69
(tftpd)

0% 50% 100%
Percentage of Runs

0.00

0.25

0.50

0.75

1.00

xinetd:13
(xinetd)

0% 50% 100%
Percentage of Runs

0

5

10

15

xinetd:19
(xinetd)

amp. maximization disabled amp. maximization enabled

Figure 5: Cumulative distribution of maximum amplification factors over all test runs (higher is better)

s t r u c t r x _ h e a d e r { / / HEADER
a f s _ u i n t 3 2 epoch ;
a f s _ u i n t 3 2 c i d ;
a f s _ u i n t 3 2 ca l lNumber ;
a f s _ u i n t 3 2 seq ;
a f s _ u i n t 3 2 s e r i a l ;
u _c ha r t y p e ;
u _c ha r f l a g s ;
u _c ha r u s e r S t a t u s ;
u _c ha r s e c u r i t y I n d e x ;
u _ s h o r t s e r v i c e I d ;
u _ s h o r t s p a r e ;

} ;
s t r u c t r x _ d e b u g I n { / / DEBUG PAYLOAD

a f s _ i n t 3 2 t y p e ;
a f s _ i n t 3 2 i n d e x ;

} ;

Listing 1: Packet structure used by OpenAFS bosserver

(rx_debugIn.index), as they are irrelevant in that case. The
shortest request payload is thus only 28+ 4 = 32 bytes in
size. This results in a UDP payload BAF of 9.75 (BAFL2
4.59), which is higher than the amplification potential of other,
widely-abused protocols such as SNMP or NetBios [74].

After contacting the maintainers of OpenAFS about our
newly found amplification vector they promptly confirmed
our findings. Interestingly, they informed us that this particu-
lar amplification vulnerability found by AMPFUZZ not only
affects the BOS Server but all OpenAFS services sharing the
same underlying RX RPC mechanism [88].

To estimate the number of vulnerable services, we per-
formed an Internet-wide scan for UDP port 7007, which the
BOS Server uses. Our scan revealed just shy of 1k vulnera-
ble OpenAFS BOS Server instances. However, the OpenAFS
maintainers had mentioned that BOS Server instances usually
run behind a firewall since they require no external com-
munication. Unfortunately, such firewalling is not possible

for some other OpenAFS services. Indeed, further scans, in-
cluding port numbers of other affected OpenAFS services
(7000-7003, 7005), indicate a total of around 16k vulnerable
OpenAFS devices in IPv4, more than enough to launch severe
attacks.

4.8 Case Study: Honeypot Synthesis

On the defensive side, amplification honeypots have proven as
an invaluable tool. By mimicking the behavior of vulnerable
systems, they hope that attackers discover and abuse them
as reflectors. As such, they not only allow monitoring and
studying attacks in real-time [44, 82], but also form the basis
of several traceback mechanisms [31, 46–48].

However, creating such honeypot systems demands sub-
stantial manual effort. Since running full implementations of
the vulnerable services would introduce prohibitive overhead,
lightweight replica implementations of their request-response
behavior are required. For every amplification vector, analysts
thus need to determine which requests the honeypot should
respond to and how to compute the response. In this section,
we thus present an automated honeypot synthesis approach
based on AMPFUZZ.

4.8.1 Honeypot Synthesis Overview

In essence, a honeypot has to check incoming requests against
a set of known patterns, and, if a match is found, output a
corresponding response. The honeypot synthesis problem
can thus be reduced to providing indicator check functions
and corresponding output functions. Since AMPFUZZ pro-
vides us with a list of request-response pairs, the core idea
of our honeypot synthesis is to use symbolic execution to
capture path constraints on the request and an abstract sym-
bolic expression of the generated response, from which we
can generate these functions.

Figure 6: Honeypot code example for OpenAFS bosserver

Symbolic Execution To collect path constraints and output
expressions, we leverage the state-of-the-art LLVM symbolic
execution framework SymCC [71], which can be nicely in-
tegrated with AMPFUZZ, as both rely on LLVM IR for in-
strumentation. We extend SymCC by providing symbolic
wrappers for receiving and sending network functions. We
generate new symbolic bytes for every byte read from the cor-
rect UDP socket for receiving functions. This allows SymCC
to treat network requests as symbolic inputs. For sending
functions, we record all collected path constraints and the
symbolic expression for every response byte. At this point,
the path constraints capture precisely which conditions the
request has to fulfill for the current response to be sent, while
the output expressions capture how the individual bytes of
the response are computed. Hence, to generate constraints
and expressions for a specific amplification vector, we only
need to replay the amplification request found by AMPFUZZ
against the SymCC-instrumented version of the target service.

Code Synthesis As a result of the previous step, we obtain
an SMT-LIB [12] model with a set of assertions describing
how to validate the amplification input and a list of expres-
sions, one for each byte of the corresponding reply. To build
a lightweight honeypot that does not rely on expensive SMT
solvers to evaluate these, we instead generate Python code
equivalent to the model. To this end, we convert all model ex-
pressions into a single-static-assignment form by performing
a post-order traversal of the expressions’ ASTs. During traver-
sal, operators and constants are replaced by their Python coun-
terparts and additional code to ensure the correct bitwidth,
while a cache ensures that equivalent subtrees are converted
only once.

Figure 6 shows an example of the honeypot code genera-
tion for the newly found amplification vulnerability in Ope-
nAFS’ bosserver, with parts of the model on the left and
their corresponding honeypot code on the right. Lines 10-
21 demonstrate an example of a request filtering constraint,

which includes bitvector concatenation and bitvector arith-
metic operations; its corresponding honeypot check code is
shown in lines 7-11. In case the check is successful, a corre-
sponding output function is called. Replies are synthesized
using the message bytes description we got from the symbolic
execution. In the example of bosserver, line 26 of the model
tells us that the output’s first 20 bytes should be the same as
the first 20 input bytes. However, byte 21 should be modified,
as shown in line 27. In particular, the output byte is computed
as the 7 highest-order bits of the 21st input byte with an ap-
pended zero bit. Our generated honeypot code translates this
to a sequence of shifts and bitwise operations, resulting in
the expression given in line 19. Lastly, the output function
returns the generated reply as a sequence of bytes, which are
then sent as a UDP packet to the originator of the request by
our synthesized honeypot.

4.8.2 Synthesized Honeypot Evaluation

As a small-scale evaluation, we synthesized a honeypot for all
vulnerabilities and reflections discovered by AMPFUZZ. To
ensure that our synthesized honeypot works as intended, we
compared its responses to those of the original services. In all
cases, the honeypot generated a response when the original
service did. While responses between the two were indistin-
guishable in many cases on a byte-level, we also observed
variance in others. This is expected for services that include,
e.g., random session identifiers in their responses but can also
appear as an artifact of concretization. Such concretization
can occur whenever non-SymCC-instrumented code such as
external libraries affects the current execution path. Still, auto-
matically synthesized honeypots can be deployed quickly to
monitor the exploitation of new amplification vulnerabilities.

4.9 Comparison with AmpMap [59]

In a recent study, Moon et al. [59] show how to estimate the
global “amplification risk” posed by amplification vulnerabili-
ties. For this, they develop AmpMap, a tool that probes public
Internet servers for amplification vulnerabilities in 6 UDP-
based protocols. As AmpMap generates requests for these
protocols based on protocol descriptions, it can be seen as an
instance of grammar-based blackbox fuzzing. We, therefore,
compare its approach and findings to that of AMPFUZZ.

Instrumentation and Configuration In contrast to AMP-
FUZZ, AmpMap does not require to instrument target services,
which in turn enables probing real-world systems that may
have multiple configurations.

Grammar-based Fuzzing By deriving inputs from a for-
mal specification, grammar-based fuzzing promises to gener-
ate valid inputs only, thus allowing a fuzzer to spend more

time testing meaningful inputs rather than fighting input syn-
tax. While many networking protocols are specified (at least
in a human-readable form) in RFCs, this is not always true.
One example is the control message protocol used by chrony
(323), which is only specified in the source code of chrony it-
self. While AMPFUZZ found a reflection vulnerability for this
protocol, AmpMap cannot generate any requests for this tar-
get without a protocol specification. In other cases, protocols
allow for custom extensions. For example, NTP monlist [6]
is a private mode 7 extension by (ntp) ntpd. The only reason
AmpMap can still identify servers vulnerable to monlist is
that it leverages scapy [13] for request generation, which in-
cludes a model of these extensions based on a review of the
ntpd source code.

Interestingly, in some cases, AmpMap fails to find ampli-
fication vulnerabilities even when a protocol specification
is available. This is the case for NTP read variables, the
most severe NTP mode 6 vulnerability. Specifically, mode
6 control messages consist of a fixed-size header and a vari-
able length data field. For the read variables command,
(ntp) ntpd requires that the 16-bit header fields offset and
assocID fields are set to 0, that the 16-bit header field count
corresponds to the length of the data field, and that the re-
quest is padded to a multiple of 4 bytes. However, AmpMap’s
grammar does not take into account the specified link between
count and the data field, and further always adds a fixed data
field of 5 bytes, which violates the padding constraint. Yet,
even with a fixed empty data and a constant count of 0, the
random black-box approach of AmpMap only generates valid
read variables requests with a chance of 1 : 232.

Lastly, there are instances where a request’s amplification
factor can be increased by violating the protocol description.
An instance of this is the vulnerability detailed in Section 4.7.
Here, AMPFUZZ was able to omit the last four bytes from
the request, although the Rx protocol draft [88] considers all
parts of the debug request payload as non-optional.

Overall, we thus find that the lack of a protocol spec-
ification excludes fuzz targets, that incomplete protocol
specifications miss vulnerabilities, and that vulnerabilities
exist even outside of complete protocol specifications.

Expert Knowledge AmpMap further augments the under-
lying, generic protocol specifications with expert knowledge
of concrete vulnerabilities. For example, while the DNS spec-
ification only defines how domain names need to be encoded,
AmpMap restricts the choice to 10 active domain names for
which DNS records exist. This ensures that all generated
DNS requests will generate responses. Likewise, for SSDP,
the grammar used by AmpMap is restricted to M-SEARCH
requests only, for which a known vulnerability exists. Yet,
providing such expert knowledge for untested protocols is
a laborious task akin to analyzing the protocol by hand. In
addition, any such restrictions will limit the scope of amplifi-
cations to small parts of the vulnerable programs only.

5 Discussion

In this section, we outline shortcomings of our evaluation
and how they can be tackled, discuss the underlying assump-
tions made by AMPFUZZ, and describe how we adhere to the
best ethical standards during our active measurements and by
disclosing the vulnerabilities to vendors.

5.1 Evaluation Shortcomings

LLVM IR The underlying ParmeSan fuzzer and the newly
added extensions for UDP-aware fuzzing rely on LLVM IR
for target instrumentation. This means that services can be
fuzzed only if they can be compiled using an LLVM-based
toolchain. For our evaluation, we further relied on wllvm [3],
thus restricting our dataset to services written in C/C++. For-
tunately, this includes most network daemons on Linux. How-
ever, we noted a few special cases where services were im-
plemented in scripting languages such as Perl or used gcc-
specific extensions such as inline assembly.

UDP Sockets Another limitation stems from our choice of
using “real” UDP sockets for passing in- and output between
the fuzzer and the SuT. This ensures that all socket-related
APIs, especially those relying on socket states such as poll
and select, behave as they would in real-world scenarios.
However, measures have to be taken to separate SuTs from
the host system and from one another, e.g., to avoid conflicts.

To this end, we used Docker containers to isolate different
SuTs into their own namespaces. However, without grant-
ing additional privileges to these containers, access to some
low-level system calls is restricted. We thus had to exclude
some targets that, e.g., attempted to perform additional socket
configuration using ioctl calls. Actual sockets also impact
parallelization during fuzzing, as only one socket may be
bound to the same port and address at a time.

We could potentially avoid both problems by preventing
the SuT from binding “real” sockets and hooking the rele-
vant socket API functions instead, albeit at the cost of more
involved instrumentation. Additionally, fuzzing speed could
also be increased by having individual SuT instances bind to
different addresses in the 127.0.0.0/8 range, as long as the
SuT can be configured accordingly and exclusive access to
other resources is not required.

Source Addresses Related to the use of actual UDP sockets,
we also noticed that some daemons ignore requests from local
addresses, while others might ignore everything else. This
could be solved by either manual inspection of the SuT or
by extending AMPFUZZ with functionality that tries fuzzing
both from local and non-local addresses.

5.2 Limitations
Single UDP Request Model Not all amplification vectors
can be discovered using AMPFUZZ. In particular, AMPFUZZ
assumes that requests are sent via UDP and that a single
request suffices to trigger amplification. While these assump-
tions currently hold for the vast majority of known vulner-
abilities, TCP-based amplification is possible [15, 51] and
attackers have reportedly used preparatory TCP requests to
implant large payloads on memcached amplifiers [23]. As
such, non-UDP and multi-request amplifications are currently
out-of-scope for AMPFUZZ.

Request Complexity Other amplification vectors are not
well-suited for discovery through greybox fuzzing. This
includes, for example, DNS, where valid domain names
can hardly be found without expert knowledge, but also
LDAP [77], where requests must be ASN.1 BER encoded3.
Yet, where a formal protocol specification exists, grammar-
based fuzzing approaches [59] can still handle the latter case.

Instrumentation AMPFUZZ assumes that targets can be
readily instrumented and is hence unable to fuzz closed-
source programs. However, recent advances in binary-only
fuzzing [61] might enable searching for amplification vectors
in closed-source programs in the future.

Target Configuration As noted in Section 4.2, AMPFUZZ
requires some manual onboarding for each target to deter-
mine the target’s command line arguments and configuration
options. While in many cases, we can complete this process
with a cursory look at the services’ man page in only a few
minutes, it remains a manual process. Furthermore, the ampli-
fication potential of a target can differ per configuration [59].
Therefore, AMPFUZZ would be best suited for large-scale
deployment in an approach similar to OSS-Fuzz [39], which
invites software maintainers to provide their fuzzing configu-
rations and automates everything from there.

5.3 Active Measurements
To assess the prevalence of vulnerable systems and hence
the threat posed by amplification vulnerabilities discovered
with AMPFUZZ, we performed Internet-wide scans. While
conducting scans, we followed best practices [28] to ensure
that our experiments caused no harm. We only scanned a
significant number of randomly sampled IP addresses to be
able to extrapolate meaningful results, sent out only a single
packet per destination, and obeyed our institute’s established
blocklist to exclude networks from the scan that had asked us
to. Our institute’s ERB approved all our active experiments.
In addition, we also made sure that our probes had no ill

3X.690, https://www.itu.int/rec/T-REC-X.690/

effects on the target systems through local experiments and
source code reviews. For example, in the case of OpenAFS,
we concluded that the debug packets we used had no side
effects other than incrementing a statistics counter.

5.4 Coordinated Disclosure
Where possible, we contacted the maintainers of affected
packages before submitting this paper to disclose our findings.
This ensures that they have a minimum of 90 days before
our findings are publicly disclosed, which aligns with the
industry standard. No party asked us to redact our results
before submission.

6 Related Work

Amplification DDoS and (network) fuzzing have been active
fields of research in the past. We now discuss how previous
works from these areas relate to AMPFUZZ.

6.1 Amplification DDoS
Paxson first discovered the risk of abusing third-party services
as reflectors for DDoS attacks in 2001 [66], showing the
UDP-based reflection potential of DNS and SNMP. In 2014,
Rossow extended the list of known-vulnerable UDP protocols
to a total of 14 and provided a measurement of their real-world
amplification factors [74].

Following that, several works have further analyzed indi-
vidual protocols for their amplification potential: For DNS,
van Rijswijk-Deij et al. studied the impact of the then-newly
introduced DNSSEC [84], while MacFarland et al. analyzed
how an attacker can optimize their queries to achieve larger
amplification factors [56]. Liu et al. and Adamsky et al. both
show how peer-to-peer networks can be leveraged to launch
amplification attacks [9,55], including a scenario in which the
attacker first uploads data to a distributed storage system and
later spoofs download requests from the victim. This attack
is conceptually similar to the later discovered Memcached
amplification attack [23]. Beyond UDP reflection, Kührer et
al. investigate the amplification potential of the TCP hand-
shake itself [51], Sargent et al. that of the IGMP management
protocol [76], while Gasser et al. warn about the threat posed
by publicly reachable BACnet devices [35].

Yet, all of the amplification vectors found in the works
above were found exclusively through manual protocol speci-
fication review or reverse engineering. Our goal is to automa-
tize new amplification discovery.

Knowing amplification vulnerabilities is vital for several
reasons. For one, it allows for assessing the threat landscape
by scanning for potential amplifiers or monitoring (malicious)
scanning activities using network telescopes [25, 49]. Further-
more, once a vulnerability is known, steps can be taken to
mitigate it. For instance, Kührer et al. [50] report a reduction

https://www.itu.int/rec/T-REC-X.690/

of vulnerable NTP servers by 92% achieved through a coor-
dinated disclosure in collaboration with multiple NOCs and
CERTs. The later study by Li et al. [53] also measures the
remediation effects on other protocols. Lastly, knowledge of
amplification vulnerabilities also enables passive monitoring
of attacks through DDoS honeypots. As such, amplification
DDoS honeypots have been proposed by Krämer et al. in
2015 [44] and by Thomas et al. in 2017 [82].

Honeypots have also been used to provide an additional per-
spective on the Denial-of-Service ecosystem, e.g., by Jonker
et al. [41], while another line of work attempts to provide
honeypot-based traceback capabilities [31, 46, 47]. By pro-
viding law enforcement agencies with additional leads when
investigating attacks, the latter underlines the utility of honey-
pot systems also outside the research community.

6.2 Algorithmic Complexity DoS
Fuzzing has been successfully applied to find another class of
Denial-of-Service attacks, namely through Algorithmic Com-
plexity (AC) bugs that incur expensive resource usage when
processing certain inputs. In 2017, Petsios et al. presented
SlowFuzz [69] based on libFuzzer [7] that discovers such
inputs for C programs using evolutionary fuzzing: the number
of executed basic blocks is counted for each randomly gener-
ated input, and the top ones are staged for one mutation each.
The same year, Lemieux et al. [52] improved over SlowFuzz’s
results, presenting a fuzzing technique based on AFL [87]
which applies several mutation transformations to random in-
puts prioritizing those traversing the most CFG edges. Noller
et al. [63] further demonstrate how fuzzing can be supple-
mented with symbolic execution to uncover deep execution
paths with high computational resource consumption. In 2020,
Blair et al. [14] challenged the coverage of AFL-based ap-
proaches. They presented micro-fuzzing for Java programs
which allows for identifying the AC-vulnerability triggering
inputs for individual functions instead of the whole program,
uncovering previously unknown AC bugs.

However, AC bugs and amplification vulnerabilities form
two different attack classes: While AC bugs can be used
to cause logical denial-of-service attacks of the vulnerable
system, amplification attacks abuse vulnerable systems as
intermediaries to attack other systems.

6.3 Fuzzing Employing Symbolic Execution
While we only use symbolic execution to generate honeypots,
several approaches have demonstrated that symbolic execu-
tion can also assist fuzzing. Such hybrid fuzzing approaches,
popularized by Stephens et al. [80], can potentially reach
“deeper” code paths into the SuT by using constraint solvers
to find new inputs. Yet, as symbolic execution is expensive,
several approaches aim to use it sparingly. For example, Peng
et. al. [67] perform regular fuzzing on a simplified version

of the SuT that lacks some checks and only identify with
symbolic execution the feasibility of discovered paths in the
original program, while Liang et al. [54] recently proposed to
use it for the initial seed generation only.

6.4 Network Fuzzing

With the recent trend of software fuzzing, some fuzzers have
been developed to target network daemons. Next to general-
purpose fuzzers that simply use network sockets as other
means of providing input to the SuT [10,27,37,40,64], this in-
cludes dedicated network fuzzers which generate inputs either
based on previously recorded client-server interactions [34,
75,81] or from protocol descriptions [11,30,42,68,79]. Some
further attempt to infer server-side state in order to reach code
paths that require multiple messages between a client and
the server [29, 34, 70]. Most of these only target TCP ser-
vices, where terminated connections can be observed easily.
The ones which allow for fuzzing UDP services either ig-
nore replies from the server completely [10, 40], or rely on
timeouts [30, 37, 64, 68, 70, 75, 81] or user-provided target-
specific scripts [27]. However, as shown in Section 4.4, UDP-
awareness of AMPFUZZ outperformed simple timeout-based
solutions by multiple orders of magnitude. More importantly,
these previous fuzzers aim to find either inputs that lead to
server-side crashes or detect differences between a protocol’s
specification and implementation. AMPFUZZ, on the other
hand, is concerned with finding amplification vulnerabilities
in a greybox, yet protocol-agnostic way.

7 Conclusion

AMPFUZZ is the first protocol-agnostic approach to discover
amplification DDoS vulnerabilities in UDP-based network
services systematically. To this end, AMPFUZZ leverages
the advancements in directed greybox fuzzing to discover
inputs that trigger large network service responses. Moreover,
AMPFUZZ augments fuzzing with UDP-awareness, i.e., the
ability to distinguish different protocol states, by combining
dynamic instrumentation with a static pre-processing.

Our experiments on real-life network services show that
UDP-awareness significantly improves fuzzing performance.
After finding candidate daemons through an SELinux refer-
ence policy analysis, we evaluated 28 daemons extracted from
the Debian package repositories. In total, AMPFUZZ identi-
fied vulnerabilities in 19 network services, 13 out of which
provide amplification with BAFL2 > 1. Next to rediscover-
ing 7 known vulnerabilities, our principled approach revealed
9 previously unknown vulnerabilities. For the most severe
of these, with a non-trivial 4.59 BAFL2, we further show its
real-world amplification potential through an Internet-wide
scan.

Acknowledgments

The authors sincerely thank the anonymous reviewers and
their shepherd, Sang Kil Cha, for their valuable feedback and
suggestions which helped to improve the paper.

References

[1] Debian packages repo. https://www.debian.org/d
istrib/packages.

[2] SELinux project. https://github.com/SELinuxPr
oject.

[3] Whole program LLVM. https://github.com/SRI-C
SL/whole-program-llvm. Version 1.2.8.

[4] Routing Information Protocol. Technical Report 1058,
June 1988.

[5] Network Time Protocol (Version 3) Specification, Imple-
mentation and Analysis. Technical Report 1305, March
1992.

[6] CVE-2013-5211. https://cve.mitre.org/cgi-bin
/cvename.cgi?name=cve-2013-5211, 2013.

[7] libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html, 2022.

[8] Joe Abley, Ólafur Guðmundsson, Marek Majkowski,
and Evan Hunt. Providing Minimal-Sized Responses
to DNS Queries That Have QTYPE=ANY. Technical
Report 8482, January 2019.

[9] Florian Adamsky, Syed Ali Khayam, Rudolf Jäger, and
Muttukrishnan Rajarajan. P2P file-sharing in hell: Ex-
ploiting bittorrent vulnerabilities to launch distributed
reflective dos attacks. In 9th USENIX Workshop on Of-
fensive Technologies, WOOT ’15, Washington, DC, USA,
August 10-11, 2015, 2015.

[10] Dave Aitel. SPIKE, a fuzzer creation kit. http://www.
immunitysec.com/downloads/SPIKE2.9.tgz. Last
Accessed 2021-06-01.

[11] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin C.
Almeroth, Richard A. Kemmerer, and Giovanni Vigna.
SNOOZE: toward a stateful network protocol fuzzer. In
Information Security, 9th International Conference, ISC
2006, Samos Island, Greece, August 30 - September 2,
2006, Proceedings, volume 4176 of Lecture Notes in
Computer Science. Springer, 2006.

[12] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The
Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[13] Philippe Biondi. Scapy - packet crafting for python2
and python3. https://scapy.net/. Last Accessed
2022-02-01.

[14] William Blair, Andrea Mambretti, Sajjad Arshad,
Michael Weissbacher, William Robertson, Engin Kirda,
and Manuel Egele. Hotfuzz: Discovering algorithmic
denial-of-service vulnerabilities through guided micro-
fuzzing. In 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020, 2020.

[15] Kevin Bock, Abdulrahman Alaraj, Yair Fax, Kyle Hur-
ley, Eric Wustrow, and Dave Levin. Weaponizing mid-
dleboxes for TCP reflected amplification. In 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, 2021.

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016. ACM, 2016.

[17] Bill Brenner. RIPv1 reflection DDoS making a come-
back. https://blogs.akamai.com/2015/07/rip
v1-reflection-ddos-making-a-comeback.html,
2015.

[18] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San
Diego, California, USA, Proceedings. USENIX Associ-
ation, 2008.

[19] Hongxu Chen, Yuekang Li, Bihuan Chen, Yinxing Xue,
and Yang Liu. FOT: a versatile, configurable, extensible
fuzzing framework. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. ACM, 2018.

[20] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by
Principled Search. In 2018 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, May 2018. IEEE.

[21] Maria Christakis, Peter Müller, and Valentin Wüstholz.
Guiding dynamic symbolic execution toward unverified
program executions. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016. ACM, 2016.

[22] Catalin Cimpanu. AWS said it mitigated a 2.3 Tbps
DDoS attack, the largest ever. https://www.zdne

https://www.debian.org/distrib/packages
https://www.debian.org/distrib/packages
https://github.com/SELinuxProject
https://github.com/SELinuxProject
https://github.com/SRI-CSL/whole-program-llvm
https://github.com/SRI-CSL/whole-program-llvm
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-5211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-5211
https://llvm.org/docs/LibFuzzer.html
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
https://scapy.net/
https://blogs.akamai.com/2015/07/ripv1-reflection-ddos-making-a-comeback.html
https://blogs.akamai.com/2015/07/ripv1-reflection-ddos-making-a-comeback.html
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/

t.com/article/aws-said-it-mitigated-a-2-3
-tbps-ddos-attack-the-largest-ever/. Last
Accessed 2022-02-01.

[23] Cloudflare. Memcached DDoS attack. https://www.
cloudflare.com/en-gb/learning/ddos/memcac
hed-ddos-attack/.

[24] Cloudflare. Rfc8482 - saying goodbye to ANY. https:
//blog.cloudflare.com/rfc8482-saying-goodb
ye-to-any/, 2019.

[25] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Chris-
tos Papadopoulos, Michael Bailey, and Manish Karir.
Taming the 800 pound gorilla: The rise and decline of
NTP ddos attacks. In Proceedings of the 2014 Internet
Measurement Conference, IMC 2014, Vancouver, BC,
Canada, November 5-7, 2014, 2014.

[26] Amir Dahan. Business as usual for azure customers
despite 2.4 Tbps DDoS attack. https://azure.micr
osoft.com/en-us/blog/business-as-usual-for
-azure-customers-despite-24-tbps-ddos-att
ack/. Last Accessed 2022-02-01.

[27] denandz. Fuzzotron - a fuzzing harness built around
ouspg’s blab and radamsa. https://github.com/den
andz/fuzzotron. Last Accessed 2021-06-01.

[28] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
Zmap: Fast internet-wide scanning and its security ap-
plications. In Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013,
2013.

[29] Rong Fan and Yaoyao Chang. Machine learning for
black-box fuzzing of network protocols. In Informa-
tion and Communications Security - 19th International
Conference, ICICS 2017, Beijing, China, December 6-8,
2017, Proceedings, 2017.

[30] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. In 29th USENIX Security Sym-
posium, USENIX Security 2020, August 12-14, 2020,
2020.

[31] Osvaldo L. H. M. Fonseca, Ítalo Cunha, Elverton C.
Fazzion, Wagner Meira Jr., Brivaldo Junior, Ronaldo A.
Ferreira, and Ethan Katz-Bassett. Tracking down
sources of spoofed IP packets. In 2020 IFIP Network-
ing Conference, Networking 2020, Paris, France, June
22-26, 2020, 2020.

[32] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In 2018 IEEE Symposium on

Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA. IEEE Computer
Society, 2018.

[33] Vijay Ganesh, Tim Leek, and Martin C. Rinard. Taint-
based directed whitebox fuzzing. In 31st International
Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings. IEEE,
2009.

[34] Hugo Gascon, Christian Wressnegger, Fabian Yam-
aguchi, Daniel Arp, and Konrad Rieck. Pulsar: Stateful
black-box fuzzing of proprietary network protocols. In
Security and Privacy in Communication Networks - 11th
International Conference, SecureComm 2015, Dallas,
TX, USA, October 26-29, 2015, Revised Selected Papers,
2015.

[35] Oliver Gasser, Quirin Scheitle, Benedikt Rudolph, Carl
Denis, Nadja Schricker, and Georg Carle. The amplifi-
cation threat posed by publiclyreachable bacnet devices.
J. Cyber Secur. Mobil., 6(1), 2017.

[36] Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann.
Dyta: dynamic symbolic execution guided with static
verification results. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM,
2011.

[37] GitLab. GitLab protocol fuzzer. https://gitlab.c
om/gitlab-org/security-products/protocol-f
uzzer-ce. Last Accessed 2021-06-01.

[38] Patrice Godefroid, Michael Y. Levin, and David A. Mol-
nar. SAGE: whitebox fuzzing for security testing. Com-
mun. ACM, 55(3), 2012.

[39] Google. Oss-fuzz. https://google.github.io/oss
-fuzz/. Last Accessed 2022-02-01.

[40] Dean Jerkovich. rage against the network. https:
//github.com/deanjerkovich/rage_fuzzer. Last
Accessed 2021-06-01.

[41] Mattijs Jonker, Alistair King, Johannes Krupp, Christian
Rossow, Anna Sperotto, and Alberto Dainotti. Millions
of targets under attack: a macroscopic characterization
of the dos ecosystem. In Proceedings of the 2017 In-
ternet Measurement Conference, IMC 2017, London,
United Kingdom, November 1-3, 2017, 2017.

[42] Rauli Kaksonen, Marko Laakso, and Ari Takanen. Sys-
tem security assessment through specification mutations
and fault injection. In Communications and Multimedia
Security Issues of the New Century, Proceedings of the
IFIP TC6/TC11 International Conference on Commu-
nications and Multimedia Security Issues, May 21-22,

https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.cloudflare.com/en-gb/learning/ddos/memcached-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/memcached-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/memcached-ddos-attack/
https://blog.cloudflare.com/rfc8482-saying-goodbye-to-any/
https://blog.cloudflare.com/rfc8482-saying-goodbye-to-any/
https://blog.cloudflare.com/rfc8482-saying-goodbye-to-any/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://github.com/denandz/fuzzotron
https://github.com/denandz/fuzzotron
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://github.com/deanjerkovich/rage_fuzzer
https://github.com/deanjerkovich/rage_fuzzer

2001, Darmstadt, Germany, volume 192 of IFIP Con-
ference Proceedings. Kluwer, 2001.

[43] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, 2018.

[44] Lukas Krämer, Johannes Krupp, Daisuke Makita, To-
momi Nishizoe, Takashi Koide, Katsunari Yoshioka, and
Christian Rossow. Amppot: Monitoring and defend-
ing against amplification ddos attacks. In Research in
Attacks, Intrusions, and Defenses - 18th International
Symposium, RAID 2015, Kyoto, Japan, November 2-4,
2015, Proceedings, volume 9404 of Lecture Notes in
Computer Science. Springer, 2015.

[45] Brian Krebs. DDoS on dyn impacts twitter, spotify,
reddit. https://krebsonsecurity.com/2016/10/
ddos-on-dyn-impacts-twitter-spotify-reddi
t/, 2016.

[46] Johannes Krupp, Michael Backes, and Christian Rossow.
Identifying the scan and attack infrastructures behind
amplification ddos attacks. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016,
2016.

[47] Johannes Krupp, Mohammad Karami, Christian Rossow,
Damon McCoy, and Michael Backes. Linking amplifi-
cation ddos attacks to booter services. In Research in At-
tacks, Intrusions, and Defenses - 20th International Sym-
posium, RAID 2017, Atlanta, GA, USA, September 18-20,
2017, Proceedings, volume 10453 of Lecture Notes in
Computer Science. Springer, 2017.

[48] Johannes Krupp and Christian Rossow. Bgpeek-a-boo:
Active bgp-based traceback for amplification ddos at-
tacks. In 6th IEEE European Symposium on Security
and Privacy, September 2021.

[49] Marc Kührer, Thomas Hupperich, Jonas Bushart, Chris-
tian Rossow, and Thorsten Holz. Going wild: Large-
scale classification of open DNS resolvers. In Proceed-
ings of the 2015 ACM Internet Measurement Conference,
IMC 2015, Tokyo, Japan, October 28-30, 2015, 2015.

[50] Marc Kührer, Thomas Hupperich, Christian Rossow,
and Thorsten Holz. Exit from hell? reducing the impact
of amplification ddos attacks. In Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014. USENIX Association, 2014.

[51] Marc Kührer, Thomas Hupperich, Christian Rossow, and
Thorsten Holz. Hell of a handshake: Abusing TCP for

reflective amplification ddos attacks. In 8th USENIX
Workshop on Offensive Technologies, WOOT ’14, San
Diego, CA, USA, August 19, 2014, 2014.

[52] Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. PerfFuzz: automatically generating patho-
logical inputs. In Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, Amsterdam Netherlands, July 2018. ACM.

[53] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad
Karami, Michael Bailey, Damon McCoy, Stefan Savage,
and Vern Paxson. You’ve got vulnerability: Exploring
effective vulnerability notifications. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, 2016.

[54] Jie Liang, Yu Jiang, Mingzhe Wang, Xun Jiao, Yuanliang
Chen, Houbing Song, and Kim-Kwang Raymond Choo.
Deepfuzzer: Accelerated deep greybox fuzzing. IEEE
Trans. Dependable Secur. Comput., 18(6), 2021.

[55] Bingshuang Liu, Jun Li, Tao Wei, Skyler Berg, Jiayi
Ye, Chen Li, Chao Zhang, Jianyu Zhang, and Xinhui
Han. Sf-drdos: The store-and-flood distributed reflective
denial of service attack. Comput. Commun., 69, 2015.

[56] Douglas C. MacFarland, Craig A. Shue, and Andrew J.
Kalafut. The best bang for the byte: Characterizing
the potential of DNS amplification attacks. Comput.
Networks, 116, 2017.

[57] Valentin J. M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering of
fuzzing: A survey. IEEE Trans. Software Eng., 47(11),
2021.

[58] Phil McMinn. Search-based software test data genera-
tion: a survey. Softw. Test. Verification Reliab., 14(2),
2004.

[59] Soo-Jin Moon, Yucheng Yin, Rahul Anand Sharma,
Yifei Yuan, Jonathan M. Spring, and Vyas Sekar. Ac-
curately measuring global risk of amplification attacks
using ampmap. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, 2021.

[60] Carlos Morales. NETSCOUT arbor confirms 1.7 Tbps
DDoS attack; the terabit attack era is upon us. https:
//www.netscout.com/blog/asert/netscout-arb
or-confirms-17-tbps-ddos-attack-terabit-a
ttack-era. Last Accessed 2022-02-01.

[61] Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser,
Jack W. Davidson, and Matthew Hicks. Breaking
through binaries: Compiler-quality instrumentation for
better binary-only fuzzing. In 30th USENIX Security

https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era
https://www.netscout.com/blog/asert/netscout-arbor-confirms-17-tbps-ddos-attack-terabit-attack-era

Symposium, USENIX Security 2021, August 11-13, 2021,
2021.

[62] Netscout. Netscout threat intelligence report - issue 7:
Findings from 1h 2021. https://www.netscout.com
/sites/default/files/2021-09/ThreatReport_1
H2021_FINAL.pdf, 2021. Last Accessed 2022-02-01.

[63] Yannic Noller, Rody Kersten, and Corina S. Pasareanu.
Badger: Complexity analysis with fuzzing and symbolic
execution. In Software Engineering and Software Man-
agement, SE/SWM 2019, Stuttgart, Germany, February
18-22, 2019, 2019.

[64] Open Reverse Code Engineering. Sulley: A pure-python
fully automated and unattended fuzzing framework. ht
tps://github.com/OpenRCE/sulley. Last Accessed
2021-06-01.

[65] Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-
rent Simon, and Hayawardh Vijayakumar. FuzzFactory:
domain-specific fuzzing with waypoints. Proceedings
of the ACM on Programming Languages, 3(OOPSLA),
October 2019.

[66] Vern Paxson. An analysis of using reflectors for dis-
tributed denial-of-service attacks. Comput. Commun.
Rev., 31(3), 2001.

[67] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: Fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceed-
ings, 21-23 May 2018, San Francisco, California, USA.
IEEE Computer Society, 2018.

[68] Joshua Pereyda. boofuzz: Network protocol fuzzing for
humans. https://github.com/jtpereyda/boofu
zz. Last Accessed 2021-06-01.

[69] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis,
and Suman Jana. SlowFuzz: Automated Domain-
Independent Detection of Algorithmic Complexity Vul-
nerabilities. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
Dallas Texas USA, October 2017. ACM.

[70] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. AFLNET: A greybox fuzzer for network protocols.
In 13th IEEE International Conference on Software Test-
ing, Validation and Verification, ICST 2020, Porto, Por-
tugal, October 24-28, 2020, 2020.

[71] Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with SymCC: Don’t interpret, compile! In
29th USENIX Security Symposium (USENIX Security
20). USENIX Association, August 2020.

[72] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In 24th Annual
Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017. The Internet Society, 2017.

[73] Jonathan Respeto. New DDoS vector observed in the
wild: Wsd attacks hitting 35/Gbps. https://www.akam
ai.com/blog/security/new-ddos-vector-obser
ved-in-the-wild-wsd-attacks-hitting-35gbps,
2019.

[74] Christian Rossow. Amplification hell: Revisiting net-
work protocols for ddos abuse. In 21st Annual Net-
work and Distributed System Security Symposium, NDSS
2014, San Diego, California, USA, February 23-26,
2014. The Internet Society, 2014.

[75] Dobin Rutishauser. Fuzzing for worms. https://gi
thub.com/dobin/ffw. Last Accessed 2021-06-01.

[76] Matthew Sargent, John Kristoff, Vern Paxson, and Mark
Allman. On the potential abuse of IGMP. Comput.
Commun. Rev., 47(1), 2017.

[77] Jim Sermersheim. Lightweight Directory Access Proto-
col (LDAP): The Protocol. Technical Report 4511, June
2006.

[78] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rit-
tenhouse, Paolo Piselli, Fan Long, Deokhwan Kim, and
Martin C. Rinard. Targeted automatic integer over-
flow discovery using goal-directed conditional branch
enforcement. In Proceedings of the Twentieth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS

’15, Istanbul, Turkey, March 14-18, 2015. ACM, 2015.

[79] Congxi Song, Bo Yu, Xu Zhou, and Qiang Yang. Sp-
fuzz: A hierarchical scheduling framework for stateful
network protocol fuzzing. IEEE Access, 7, 2019.

[80] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings 2016 Network and
Distributed System Security Symposium, San Diego, CA,
2016. Internet Society.

[81] Cisco Talos. Mutiny fuzzing framework. https://
github.com/Cisco-Talos/mutiny-fuzzer. Last
Accessed 2021-06-01.

[82] Daniel R. Thomas, Richard Clayton, and Alastair R.
Beresford. 1000 days of UDP amplification ddos at-
tacks. In 2017 APWG Symposium on Electronic Crime

https://www.netscout.com/sites/default/files/2021-09/ThreatReport_1H2021_FINAL.pdf
https://www.netscout.com/sites/default/files/2021-09/ThreatReport_1H2021_FINAL.pdf
https://www.netscout.com/sites/default/files/2021-09/ThreatReport_1H2021_FINAL.pdf
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://www.akamai.com/blog/security/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps
https://www.akamai.com/blog/security/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps
https://www.akamai.com/blog/security/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps
https://github.com/dobin/ffw
https://github.com/dobin/ffw
https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer

Research, eCrime 2017, Phoenix, AZ, USA, April 25-27,
2017, 2017.

[83] Andrew J. Valencia, Glen Zorn, William Palter, Gurdeep-
Singh Pall, Mark Townsley, and Allan Rubens. Layer
Two Tunneling Protocol "L2TP". Technical Report
2661, August 1999.

[84] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras.
DNSSEC and its potential for ddos attacks: a compre-
hensive measurement study. In Proceedings of the 2014
Internet Measurement Conference, IMC 2014, Vancou-
ver, BC, Canada, November 5-7, 2014, 2014.

[85] Paul Vixie. Response rate limiting in the domain name
system (dns rrl). http://www.redbarn.org/dns/ra
telimits, 2012.

[86] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
Taintscope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In 31st
IEEE Symposium on Security and Privacy, S&P 2010,
16-19 May 2010, Berleley/Oakland, California, USA.
IEEE Computer Society, 2010.

[87] Michal Zalewski. American Fuzzy Lop: a security-
oriented fuzzer. http://lcamtuf.coredump.cx/af
l/, 2010.

[88] Nickolai Zeldovich. Rx protocol specification draft.
http://web.mit.edu/kolya/afs/rx/rx-spec.
Last Accessed 2022-02-01.

[89] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided Grey-
box Fuzzing. USENIX Association, August 2020.

A Selected Fuzz Targets

Table 3 presents all targets used in our evaluation discussed
in Section 4.

Table 3: Selected Fuzz Targets (marked ports denote protocols
with known amplification vectors)

package version binary ports

atftpd 0.7.git20120829-3.3+deb11u1 atftpd 69
in.tftpd 69

chrony 4.0-8+deb11u1 chronyd 123, 323
inetutils-syslogd 2:2.0-1 syslogd 514
knot 3.0.5-1 knotd 53
krb5-admin-server 1.18.3-6+deb11u1 kadmind 464
krb5-kdc 1.18.3-6+deb11u1 krb5kdc 88
memcached 1.6.9+dfsg-1 memcached 11211
minissdpd 1.5.20190824-1 minissdpd 1900
ntp 1:4.2.8p15+dfsg-1 ntpd 123
ntpsec 1.2.0+dfsg1-4 ntpd 123
openafs-fileserver 1.8.6-5 bosserver 7007
openbsd-inetd 0.20160825-5 inetd 7, 13, 19, 37
rsyslog 8.2102.0-2 rsyslogd 514
stubby 1.6.0-2 stubby 53
talkd 0.17-17 in.ntalkd 518

in.talkd 517
tftpd 0.17-23 in.tftpd 69
xinetd 1:2.3.15.3-1+b1 xinetd 7, 9, 13, 19, 37
xl2tpd 1.3.12-1.1 xl2tpd 1701

http://www.redbarn.org/dns/ratelimits
http://www.redbarn.org/dns/ratelimits
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://web.mit.edu/kolya/afs/rx/rx-spec

	Introduction
	Background
	Fuzzing
	Amplification Attacks
	Amplification Vulnerabilities

	Fuzzing for Amplification
	Amplification Fuzzing Challenges
	Design Overview
	Protocol-Agnostic Fuzzing
	UDP-Aware Fuzzing
	Amplification Feedback and Optimization
	Implementation

	Evaluation
	Research Questions
	Fuzz Target Selection and On-Boarding
	Experimental Setup
	(RQ1) Efficacy of Fuzzing for Amplification Vulnerabilities
	(RQ2) Impact of UDP-aware fuzzing
	(RQ3) Amplification Maximization
	Case Study: openafs bosserver
	Case Study: Honeypot Synthesis
	Honeypot Synthesis Overview
	Synthesized Honeypot Evaluation

	Comparison with AmpMap DBLP:conf/uss/MoonYSYSS21

	Discussion
	Evaluation Shortcomings
	Limitations
	Active Measurements
	Coordinated Disclosure

	Related Work
	Amplification DDoS
	Algorithmic Complexity DoS
	Fuzzing Employing Symbolic Execution
	Network Fuzzing

	Conclusion
	Selected Fuzz Targets

