ARTIFACT
EVALUATED
susenix

»

AVAILABLE

Approve Once, Regret Forever:
On the Exploitation of Ethereum’s Approve-TransferFrom Ecosystem

Nicola Ruaro’, Fabio Gritti", Dongyu Meng', Robert McLaughli'nT, Ilya Grishchenko?,
Christopher Kruegel', and Giovanni Vigna®

TUniversity of California, Santa Barbara, iUniversity of Toronto
{ruaronicola,degrigis,dmeng,robert349,chris,vigna} @cs.ucsb.edu, ilya.grishchenko @utoronto.ca

Abstract

Smart contracts are immutable programs hosted on the block-
chain that power decentralized applications. With the growth
of decentralized finance (DeFi), many services interact with
contracts that must be trusted to manage digital assets. To
this end, several Ethereum standards (e.g., ERC20, ERC721)
introduced an approval mechanism that allows decentralized
applications to trade digital assets (or “tokens”) on behalf of
others. After receiving an approval, the (approved) application
can invoke the token’s transferFrom function to trade the
approved tokens. Unfortunately, approved applications often
contain vulnerabilities. If an attacker maliciously controls the
parameters of a transferFrom call, they can steal not only
the application’s assets but also the assets of any user who pre-
viously approved the application. We refer to this widespread
issue as Approved Controllable TransferFrom (ACT), which
has already led to losses exceeding 65 million USD.

We present OSPREY, an end-to-end system that detects ACT
vulnerabilities and automatically generates proof-of-concept
attacks. Our evaluation across the entire Ethereum ecosystem
identified 32,582 potentially vulnerable contracts, with 410
confirmed exploitable at the time of writing. Our findings
reveal previously unknown attack vectors threatening digital
assets worth over 3.4 million USD.

1 Introduction

Ethereum [18] is a global, decentralized blockchain that
allows both peer-to-peer transfers of Ether (its native cur-
rency) and on-demand execution of decentralized programs
(smart contracts) on the Ethereum Virtual Machine (EVM),
laying the foundations for complex decentralized applica-
tions. Ethereum hosts a variety of such applications, includ-
ing games [48], loan providers [2], artwork auctions [44], and
financial derivatives [3]. Users can interact with applications
in a trustless and transparent way thanks to Ethereum’s public
ledger: a smart contract’s state is entirely public, its code is
immutable, and its execution rules are clearly defined.
Ethereum is the largest programmable blockchain by mar-
ket capitalization — $398 billion at the time of writing [11].

This exceptional growth has been driven by the excitement
around decentralized finance (DeFi): a rich ecosystem of
digital currencies and financial services such as lending plat-
forms, decentralized marketplaces, and governance systems.
DeFi services often incorporate several interoperating smart
contracts, collectively referred to as “DeFi protocols,” and
hundreds of digital currencies that operate independently from
Ether and can be tailored to the protocol’s needs. Since trans-
acting with diverse assets could become cumbersome and
inefficient, Ethereum standards such as ERC20 [16] provide a
standardized way to create digital currencies (i.e., “tokens”).

Ethereum users interact with a DeFi protocol on-demand
by signing and broadcasting a transaction. An Ethereum user
might want to buy a certain amount of tokens, swap them for
different tokens, or lend them to other users for a small fee.
To accomplish this, DeFi protocols commonly make use of
coordinated interactions between several smart contracts. For
example, a user may consult an on-chain oracle for exchange
rates, swap ERC20 tokens on a decentralized exchange, and
then lend them to others via a lending protocol.

The composable nature of DeFi protocols allows for the
creation of sophisticated services and financial transactions.
However, these composable interactions also give rise to
greatly increased logical complexity and a much broader at-
tack surface. DefilLlama [12] estimates that DeFi protocols
lost more than 5 billion USD due to attacks since January
2021, making smart contract vulnerability hunting a hot topic
in both industry and academia [6, 19,22,43].

One vulnerability that has lately emerged lies in the ac-
cess control mechanisms of Ethereum’s token ecosystem. In
Ethereum, access control traditionally relied on the identity of
the transaction’s sender (the signer). If the transaction sender
is the owner of the tokens, then they are allowed to transfer
their tokens — otherwise, access is denied. However, this type
of access control quickly became insufficient to support the
needs of protocol developers. For example, a lending protocol
must be able to move a user’s tokens when another user re-
quests to borrow them, on-demand, without interacting with
the user(s) who provided the tokens in the first place. Of

course, this cannot work with traditional (transaction sender-
based) access control, since the owner is not sending the
transaction. One option is to require that the lender simply
transfers (upfront) all their assets to the lending protocol, but
this would subject the lender to increased risk: if the lend-
ing protocol is compromised, the protocol’s users might lose
all their funds. To bridge this gap, the ERC20 standard, and
other standards such as ERC721 [15] and ERC1155 [14],
introduced approvals as an alternative access control mecha-
nism [10]. In brief, instead of transferring assets directly to the
lending protocol, the tokens’ owner (i.e., the “approver”) can
invoke the token’s approve function to allow a different user
or smart contract (i.e., the “spender”) to trade an allowance
(amount) of tokens on their behalf. The spender can then di-
rectly invoke the token’s transferFrom function in order to
transfer the tokens from the approver’s account to another
account. In this way, if the lending protocol is compromised,
its users can revoke their approval to rescue their tokens. Crit-
ically, revoking approval does not require any interaction with
the lending protocol, so this action can be performed even if
the protocol itself is no longer usable.

Approvals come with inherent risk, as approved spenders
may transfer tokens to unintended recipients — perhaps due to
a flaw in the smart contract [37,38,40], or a malicious trusted
administrator [24]. This greatly amplifies an attack’s impact:
An attacker can steal not only the assets directly owned by the
victim contract but also the assets of any user who previously
approved the victim contract.

To maliciously transfer approved user assets, an attacker
must devise a way to interact with the victim contract and
make that contract execute an outbound function call (to an-
other smart contract) with attacker-controllable arguments. If
the attacker can achieve this, they can force the victim contract
to call the t ransferFrom function of any arbitrary token, and
thus, request the transfer of tokens through the victim contract
(spender) on behalf of a user of choice (approver) to the at-
tacker’s wallet. We will refer to this class of vulnerabilities as
Approved Controllable TransferFrom (ACT) vulnerabilities.

Detecting logic vulnerabilities such as ACT is known to
be hard [59]. To this day, ACT vulnerabilities are routinely
exploited, and we estimate that over 65 million USD have
been stolen since 2020 due to this class of vulnerabilities
alone [46]. Previous works [23,60] have proposed generic
systems that use taint analysis to detect “fully controllable”
function calls — that is, function calls where every argument
is attacker-controllable. However, a fully controllable call is
neither a necessary nor a sufficient condition for an ACT vul-
nerability. First, a partially controllable call can still lead to an
ACT vulnerability. Unlike generic arbitrary call vulnerabilities,
ACT vulnerabilities often emerge from partially controllable
calls where the attacker has limited but sufficient influence
over critical execution parameters. Second, an ACT vulnerabil-
ity only occurs if the vulnerable contract is approved to spend
other users’ funds. Thus, detection requires a deep understand-

ing of the DeFi context — that is, the approve-transferFrom
mechanism and the on-chain approval states.

In this paper, we describe the design and implementation
of a novel end-to-end system (OSPREY) to detect ACT vul-
nerabilities. To address the limitations of existing systems,
our approach uses a combination of static analysis, symbolic
execution, and concrete execution to provide (1) a deep under-
standing and proper handling of on-chain token approvals, (2)
an analysis of the constraints at the call site to determine the
degree of control that the attacker has over the call parameters,
and (3) the automated generation of (semantically correct)
interactions between the target contract and external contracts.
First, OSPREY analyzes on-chain data to find all contracts
that have been granted approval to transfer another account’s
tokens. Second, OSPREY studies the internal state of the in-
volved tokens to identify (or simulate) potential victim users.
Third, OSPREY relies on symbolic execution to model the
external interactions of the approved contract. OSPREY’s anal-
ysis of these interactions is specialized to detect and exploit
ACT vulnerabilities. In certain cases, reaching the vulnerable
call requires not only precise input but also successful inter-
actions with (user-controlled) external “accessory” contracts.
OSPREY identifies these cases and automatically generates
accessory contracts that shape the execution environment and
enable the deep execution required to reach the vulnerable
call. Upon detection, OSPREY raises warnings (along with
an associated confidence level) and, if possible, automatically
crafts an end-to-end exploit against the victim contract.

Although approvals are a common mechanism across sev-
eral token standards, the following sections focus on the
ERC20 standard. We refer the interested readers to Section 5.6
for an in-depth discussion of other token standards. In this
paper, we make the following contributions:

* We present a novel approach leveraging static analysis,
symbolic execution, and concrete execution to find ACT
vulnerabilities and automatically craft proof-of-concept
attacks. We implement our approach in OSPREY.

* We compile a labeled dataset of historical attacks that
exploited ACT vulnerabilities. Our dataset includes infor-
mation such as the exploit transactions, the vulnerable
contracts, and the vulnerable functions.

* We evaluate OSPREY against (1) our dataset of known
attacks and (2) 424,676 Ethereum contracts that have his-
torically received ERC20 approvals. We identify 32,582
previously-unreported contracts that are potentially vul-
nerable to ACT vulnerabilities. OSPREY automatically
crafts proof-of-concept attacks for 410 of them and esti-
mates the financial damage to be over 3.4 million USD.

* We demonstrate that our conceptual approach is appli-
cable to arbitrary token standards with approvals. Our
evaluation against ERC721 uncovered 18 previously un-
reported vulnerable contracts with confirmed exploits.

2 Background

Smart Contracts. Ethereum smart contracts are programs
typically written in a high-level language — such as Solid-
ity [49] — and then compiled to EVM bytecode. Smart con-
tracts can be deployed either (directly) by a blockchain user
or (indirectly) during the execution of another smart contract.

Once deployed on the blockchain, smart contracts can be
executed on demand. More precisely, a smart contract exe-
cutes when a blockchain user requests to execute one of the
contract’s (public) functions by sending a signed external
transaction — optionally including input data and some value
of Ether. The EVM then processes the transaction and se-
quentially executes the contract’s EVM instructions. During
execution, smart contracts make use of two types of tempo-
rary storage — addressable memory and a stack — and one
type of persistent storage, which is simply known as “storage.”
Storage persists across transactions and allows, for example,
to keep track of a user’s balance over time.

A smart contract can interact with other smart contracts
by invoking one of their functions (which likewise optionally
includes input data and a quantity of Ether to transfer) — an
interaction also known as an internal transaction.

Regardless of the type of interaction (i.e., external or inter-
nal), public functions are the only entry point for the contract’s
functionality. By convention, each public function is associ-
ated with a four-byte-long function selector. The transaction
sender can provide the function selector — and the function
arguments — as part of the input data (i.e., calldata) to the
smart contract. A dispatcher routine in the target contract
then selects the function to be executed based on the func-
tion selector. If matched, the dispatcher executes the function,
otherwise it executes a fallback function.

In the EVM, three key instructions enable contract-

to-contract function calls (and Ether transfers): CALL,
STATICCALL, and DELEGATECALL. In this paper, we study
controllable CALL instructions as the primary interaction
mechanism in ACT vulnerabilities, but we also handle
DELEGATECALL instructions when the smart contract execu-
tion is delegated.
Controllable CALLs. In certain instances, a user may be able
to control the contents of an internal transaction’s calldata,
either in part or in whole. In many cases, this is intentional
and necessary to support the regular functionality of smart
contracts. For example, when placing a “buy” order on a
decentralized exchange, users specify a token and desired
quantity. The exchange contract then calls the token’s transfer
function with the user-supplied quantity parameter.

Unfortunately, the ability of a (malicious) user to control
certain call parameters can lead to security vulnerabilities
when not adequately restricted. For example, a distributed
exchange must only transfer to the user an amount of to-
kens commensurate to the payment made. Allowing arbitrary,
unchecked user data in the “quantity” field of the “transfer”

1
2
3
4
5
6

contract ERC20
map (addr => uint) balance;
map (addr => map (addr => uint)) allowance;

function transfer (addr to, uint val)

require (balance[msg.sender] >= val);
balance [msg.sender] -= val;
balance[to] += val;

emit Transfer (from, to, val);

function approve (addr spender, uint val)
allowance [msg.sender] [spender] = val;
emit Approval (msg.sender, spender, val);

function transferFrom(addr from, addr to, uint val)
require (allowance[from][msg.sender] >= val);
require (balance[from] >= val);
allowance[from] [msg.sender] -=
balance[from] -= val;
balance[to] += val;
emit Transfer (from, to, val);

val;

Figure 1: Simplified Solidity code of an ERC20 contract.

function could lead to severe security issues — allowing an
attacker to steal an arbitrary amount of tokens. For this rea-
son, developers must take great care when permitting user-
controllable content in their outgoing calls.

Avoiding user-controllable calls is critical because access
control regularly relies on the identity of the msg.sender.
This value represents the entity that initiated the contract call
—i.e., the transaction sender for external transactions or (more
interestingly) the calling contract for internal transactions.
If an attacker can control a contract-originated internal call,
they may impersonate the calling contract, bypassing identity-
based access control checks. For example, if given sufficient
control, an attacker could force the victim contract to execute
the “transfer” function of a token, thus moving assets from
the contract’s account to the attacker’s account.

Manipulating a contract to carry out actions on its behalf
is a classic example of a confused deputy attack. The (vic-
tim) smart contract, acting as the deputy, is confused into
executing actions on behalf of the attacker. Previous work and
best practices emphasize the importance of robust access con-
trol [6,21] and cautious handling of calls and their parameters
to mitigate the risk of confused deputy attacks [23, 60].
Token Transfers. The ERC20 standard outlines a common
interface for fungible tokens ', enabling seamless interactions
across the Ethereum ecosystem. We show a highly simplified
ERC20 token implementation in Figure 1. At its core are a
set of state variables, events, and public functions supporting
two key functionalities: direct and indirect token transfers.

A direct token transfer occurs when a token holder transfers
tokens to another address using the token’s transfer func-
tion (Lines 5-9). In brief, transfer is a public function that
facilitates the transfer of a specified amount of tokens from
the transaction sender to the desired recipient — without any
intermediaries. Access control is implicit: the sender of the

1Other token standards exist, such as ERC721 [15] (non-fungible tokens),
ERC1155 [14] (multi-token), and ERC4626 [17] (tokenized vaults).

transaction (msg. sender) can only spend their own balance.
Upon successful execution, transfer will update the token
balance (balance) of the two involved accounts to reflect
the transaction and emit a Transfer event — which allows
off-chain applications to monitor and index the activity.

An indirect token transfer occurs when a third party (called
the “spender”) invokes the token’s t ransferFrom function
(Lines 15-21). In brief, transferFrom is a public function
that allows a spender to transfer tokens from one account
(from) to another (to) on behalf of the token holder, provided
the spender was previously approved. Access control is still
implicit: the spender must be msg. sender. However, the to-
ken owner can arbitrarily approve any address to become
an approved spender. More precisely, the approve function
(Lines 11-13) allows a token owner to set an allowance for the
spender, specifying the maximum amount of tokens they can
transfer on their behalf. Importantly, the owner must explic-
itly grant permission before the spender attempts the transfer.
Upon successful execution, transferFrom updates the to-
ken balance (balance) and token allowance (allowance)
of the involved accounts and emits a Transfer event. Simi-
larly, upon successful execution, approve updates the token
allowance of the spender and emits an Approval event. This
additional layer of indirection enables a more complex but still
secure interaction model, allowing the integration of ERC20
tokens into a broader range of applications and services.

In conclusion, when blockchain users grant approvals to a
third-party contract, they trust such a contract to operate on
their behalf. This is often required in decentralized applica-
tions, but creates an opportunity for an attacker to abuse the
trust relationship between the trusted contract and its users.

Approval Signatures. Direct and indirect token transfers
require the token owner to interact with the token contract
— either calling the transfer or approve function — and to
pay a gas fee for such transaction. The token owner must
also interact with the token contract to revoke any approvals,
which also incurs a gas fee. Permit signatures attempt to solve
this problem by allowing the token owner to sign an approval
message off-chain. These come in two varieties: EIP-2612
permit signatures [29], and Permit2 signatures [57].

EIP-2612 signatures are simple: the owner creates a signa-
ture and, off-chain, sends it to the spender. The spender then
uses it as proof of the approval, which the ERC20 token veri-
fies on-chain. This ultimately leads to a change in allowance
and is thus indistinguishable from normal approvals for the
purpose of this work.

Unfortunately, supporting EIP-2612 signatures requires up-
dating the token contract itself, which may be either difficult
or impossible depending on the token’s configuration. For
this reason, Uniswap [56] designed the Permit2 contract as
an alternative mechanism. To use Permit2, the token owner
must approve the Permit2 contract (instead of the spender),
and must sign an approval message off-chain, allowing the
spender to transfer tokens via Permit2 on their behalf. To

1
2
3
4
5
6

contract Lending

ERC20 token = 0x[...];

map (addr => uint) balance;

map (addr => map (addr => uint)) debt;
function offerLoan (uint val)

balance [msg.sender] += val;

function borrow (uint val)
valid bllateral

ensure

fir a valid lender

require (balance[lender] >= val);

token.transferFrom(lender, msg.sender, val);
balance[lender] -= val;
debt [msg.sender] [lender] += val;
function repay (address lender, uint val)
require (debts [msg.sender] [lender] >= val);

uint fee = val * 0.1;
token.transferFrom (msg.sender, lender, val+fee);
debts [msg.sender] -= val;
function execute (address executor, bytes data)
(missin access control)

executor.call (data) ;

Figure 2: Simplified Solidity code of the vulnerable contract.
The execute function lacks proper access control and allows
an attacker to manipulate the call at Line 25.

perform a transfer, the spender then interacts directly with the
Permit2 contract (instead of the token) and uses the user’s sig-
nature as proof that permission is granted. Permit2 signature-
based approvals do not require any change in the underlying
token contract but rather modify the Permit2 contract’s inter-
nal allowances.

3 Motivation

The approval mechanism allows decentralized financial

services to (indirectly) transfer their users’ assets. This mech-
anism is indispensable for a wide array of DeFi applications.
Unfortunately, approvals also open avenues for potential ex-
ploitation. In the following paragraphs, we present a scenario
that aims to clarify the typical use (and importance) of token
approvals while shedding light on the vulnerabilities they po-
tentially introduce. Throughout this section, we will refer to
the code of the victim Lending contract shown in Figure 2,
and the interaction diagram presented in Figure 3.
Benign Flow of Actions. Alice is an active blockchain user,
eager to explore Ethereum’s decentralized financial services
and make the most of her asset holdings. Alice owns some
tokens and would like to earn interest on her holdings by
loaning them out through a Lending platform. To do this, she
first approves the Lending platform to manage 100 of her
ERC20 tokens (@). This is required by the Lending contract
to execute transactions on her behalf. Then, she calls the
function offerLoan (Lines 6-7) to inform the platform that
she is willing to lend 10 of her tokens ((B)). At this stage, the
Lending contract updates Alice’s internal balance (Line 7)
but does not transfer any tokens.

Afterward, Bob invokes the function borrow (Lines 9-15,
(©), and offers appropriate collateral for the loan he wishes to

| Lending

approve (Lending, 100) @

©
b

| ERC20

v

offerLoan (10)
borrow (10) @

v

] [Alice]

v

Bob

repay (Alice, 10) @

v

(

execute (token, "transferFrom...") @

<]
>
[

v

EtransferFrom(Alice, Bob, 10) @

v

. transferFrom(Bob, Alice, 11) ®

v

. transferFrom(Alice, Eve, 90) @

v

Figure 3: Simplified interaction flow of the Lending contract. Alice approves the Lending platform to manage 100 of her ERC20
tokens (@). Then, she lends 10 of her tokens (). Bob requests to borrow 10 tokens (@). The Lending contract matches Bob’s
request with a valid lender (Alice) and transfers 10 tokens from Alice to Bob (@). Later, Bob repays his debt — plus an interest
fee (E)E)). Eve notices that the execute function has improper access control, and calls it (@). The Lending contract executes

Eve’s request and transfers 90 tokens from Alice to Eve (@).

secure. The platform matches his request with Alice’s offer,
and invokes the ERC20 token’s transferFrom function to
transfer 10 tokens from Alice to Bob (@). As aresult, Bob
has borrowed 10 tokens from Alice (and is now the new
owner). To get his collateral back, Bob is obliged to return
the tokens that he owes — plus some interest, according to
the terms set by the Lending platform. Thus, Bob calls the
function repay (Lines 17-21, (E)). The platform then transfers
11 tokens from Bob to Alice ((F)), closing the loop on the
smart-contract-mediated lending-borrowing operation.

Malicious Flow of Actions. Eve has found a flaw in the
Lending platform’s smart contract. Within the contract’s code
is a function named execute (Lines 23-25). The execute
function takes two parameters: executor and data. When in-
voked, this function will call the executor contract with the
provided data bytes as input. Critically, the execute func-
tion does not include any access control checks. Thus, Eve
invokes the execute function (@) and provides as arguments
(1) the address of the token contract and (2) the input data
transferFrom(Alice, Eve, 90) (as bytes). The Lending
platform complies, proceeding to transfer 90 tokens from
Alice to Eve ().

Threat Model. ACT vulnerabilities differ from open-call vul-
nerabilities in two key ways. First, ACT vulnerabilities can
only exist in very particular settings — that is, an approved
contract with the ability to interact with other token contracts.
Detecting this setting is critical and allows one to significantly
reduce false positives. Second, ACT vulnerabilities require
valid interactions with the token contract and, thus, require
modeling a more powerful attacker with knowledge of the to-

ken functionality. With this knowledge, the attacker can craft
an exploit even if only a few bytes are controllable. Since
ACT is a logic vulnerability, proper modeling of the attacker is
critical and allows us to significantly reduce false negatives.

Since 2020, at least 22 high-profile incidents have been
made public where attackers exploited ACT vulnerabilities to
steal a total of 65 million USD [46]. These attacks have two
common properties: (1) DeFi users trusted the victim contract
to manage tokens on their behalf, and (2) the attacker found a
way to manipulate the victim contract and gain control over
a call to transferFrom. This allowed the attacker to gain
unauthorized access to the funds of all DeFi users who trusted
(approved) the victim contract. In this work, we consider a
contract vulnerable to an ACT vulnerability if it satisfies the
following requirements:

(R1). The contract must have been previously approved as
the spender for at least one token.

(R2). The contract must contain a (partially) controllable func-
tion call that can be manipulated to (a) call the transferFrom
function of a valid token and (b) transfer tokens from one user
(not the attacker) with active approvals to the attacker’s wallet.

(R3). The controllable function call can be executed success-
fully — without reverting — by any arbitrary blockchain user —
e.g., without access control.

Among the 22 attacks that have exploited ACT vulnerabil-
ities, 14 match this threat model. We consider these attacks
to be within the scope of our work. The remaining 8 attacks
required the attacker to chain additional vulnerabilities. We
deem these attacks out-of-scope for our automated analysis.

4 Approach

At a high level, OSPREY aims to detect controllable calls to
a transferFrom function that — if executed by an attacker
— enable the unauthorized transfer of assets from a victim
users’ account to the attacker. Our approach consists of five
analysis stages as shown in Figure 4 (@-@): First, we ana-
lyze Ethereum’s historical transactions to identify all smart
contracts that have ever been approved to spend any ERC20
token (R1). Second, we use symbolic execution to analyze
each approved contract (found in the first stage) and deter-
mine whether any of its CALL instructions is controllable and
can be manipulated to meet the (R2) requirements. At this
stage, the analysis operates under an ideal (entirely symbolic)
blockchain environment. That is, in the real world, the CALL
instruction might not be reachable. Third, we use a combi-
nation of symbolic and concrete execution to verify that the
CALL instruction is actually reachable and controllable under
a concrete blockchain environment — and can be executed
without reverting (R3). If so, we determine that the contract
is vulnerable. Otherwise, we use heuristics to determine the
reason for failure and emit warnings with two degrees of con-
fidence — high-confidence if the execution reverts after the
transferFrom call, or else low-confidence. Fourth, utilizing
our knowledge of existing on-chain approvals, we further an-
alyze all vulnerable contracts and attempt to automatically
synthesize a proof-of-concept attack (an exploit). Finally, we
estimate the current (and historical) impact of all such ex-
ploits. In the following sections, we describe each stage in
more detail.

4.1 Approved Contracts

ACT vulnerabilities only have a material impact among smart
contracts that have received user approvals. In fact, a contract
that has not received user approvals does not have authoriza-
tion to transfer any token other than its own. Thus, we first
identify all contracts that have received user approvals, which
constitute the underlying dataset for subsequent analysis.
@ Approval Filter. As mentioned in Section 2, when users
want a third-party contract to manage their ERC20 tokens
on their behalf, they must first interact with the correspond-
ing ERC20 token contract to issue an approval. In turn, the
ERC20 token contract will update its internal state to reflect
the approval and emit an Approval event that informs other
parties of this change. The ERC20 specification requires that
tokens emit this event upon a successful call to approve [16].
In our setup, we use a well-known and locally deployed
Ethereum client, Erigon [27], and leverage its record of log
events to observe and collect all approval events. We do this
for all ERC20 tokens, regardless of their value. In this way, we
reconstruct a complete historical picture of all smart contracts
that have ever been approved to trade users’ funds. We refer
to this group of contracts as the APPROVED contracts.

4.2 Controllable TransferFrom

Once we have identified all APPROVED contracts, we analyze
them to find ACT vulnerabilities. We do this in two steps.
First, we use a lightweight static analysis, based on symbolic
execution, to discard all contracts without a controllable call
to a transferFrom function. Second, we analyze the remain-
ing contracts using a combination of symbolic and concrete
execution to understand whether the controllable call can be
executed under a specific, concrete blockchain environment.
Depending on the outcome of the latter analysis, we either de-
termine that the contract is VULNERABLE or raise a warning
if the vulnerability cannot be (concretely) confirmed.

@ Off-chain Controllability. To identify controllable calls
to transferFrom, we implement a static analysis stage based
on the symbolic (simulated) execution of the APPROVED con-
tract. Although this does not guarantee that the call can be con-
trolled in practice, it allows us to isolate a group of contracts
that would be vulnerable given the right blockchain state. In
other words, we determine whether the call to transferFrom
would be controllable under an entirely symbolic blockchain
environment.

Practically, we statically inspect the APPROVED contract’s
code to find all CALL instructions. For each CALL instruction,
we study the contract’s control flow graph (CFQG) to identify
all public functions that can reach such instruction — that is,
the relevant contract’s entry points. Then, we leverage a sym-
bolic execution engine for EVM smart contracts, greed [55],
to execute the contract’s code symbolically. More precisely,
using directed symbolic execution [31], we execute the AP-
PROVED contract’s code from each relevant entry point (a
subset of public functions) to an identified CALL instruction.
After reaching this CALL instruction, we request from greed a
solution that satisfies all the accumulated path constraints and
allows an attacker to steal ERC20 tokens belonging to a dif-
ferent user. To this end, we formulate the following additional
constraints:

1. The CALL target address must be a valid ERC20 token.
2. The function selector must be equal to transferFrom.

3. The transferFrom “from” parameter (the victim) must
be different from the attacker’s address.

4. The transferFrom “to” parameter must be equal to the
attacker’s address.

5. The transferFrom “value” parameter must be greater
than zero.

If such a solution exists, we determine that the CALL instruc-
tion might be controllable. We refer to a contract with a con-
trollable CALL as a CANDIDATE contract.

© On-chain Controllability. At this stage, we must deter-
mine whether the CANDIDATE contract allows a controllable

w

“ N N | .
" 4 Off-Chain On-Chain .~ | | 'm~
9 Analysis Analysis . '
g ! Warning
1R J
o ————————————————————————————————— -
E |V I\ /ol | V| +-===-mmmmmmmmm e e oo - - - N
§) N)
5]
= g w 1
= Exploit % Impact =
ial | X \ ?
A Generation * @ Analysis 6 ' g
v)) Exploit
/

- -

- e e e e e e e e e e e

Figure 4: Overview of our approach, implemented in OSPREY. The analysis pipeline follows the order of the circled numbers.
First, @ we identify smart contracts with user approvals. Then, @ we use symbolic execution to determine if the contract would
be vulnerable under an ideal blockchain environment. € We verify that the contract is vulnerable under a specific, concrete
blockchain environment. If not, we emit a warning. Otherwise, @ we automatically craft an exploit and @ estimate its impact.

function execute2 (address registry, bytes data)
address executor = registry.executor ();
executor.call (data) ;

Figure 5: The execute?2 function allows manipulating the
call at Line 3: the attacker-controlled registry contract can
be crafted to manipulate the address of the executor.

function call to transferFrom under a specific, concrete
blockchain environment. We leverage the same symbolic exe-
cution technique presented in @ — but with a concrete (non-
symbolic) environment — to automatically craft the calldata
needed to launch the attack on-chain. We then concretely ex-
ecute the attack against the same specific blockchain state.
More precisely, we simulate the execution of the attack against
our locally deployed Ethereum client. If the attack is success-
ful, we report the contract as VULNERABLE. Otherwise, we
resume symbolic execution and iteratively retry to synthesize
the input data for a different path until the attack succeeds. If
the attack generation fails for all attempted paths, we automati-
cally classify the failure and emit warnings where appropriate.

Practical Challenges. In Section 3, we provided a simplified
example of a vulnerable Lending contract. Real-world con-
tracts are often considerably more complex. The additional
complexity comes from both the contracts’ logic and their
external interactions. Modeling these external interactions is
one of our primary analysis challenges. Previously, during @,
we modeled the blockchain environment (and all contract in-
teractions) symbolically. In other words, our analysis assumed
that any interaction of the CANDIDATE contract with external
contracts (1) does not have any side effects and (2) returns
exactly what is needed to continue the symbolic exploration —
that is, to satisfy the symbolic constraints. Of course, these
assumptions might not hold during concrete execution.

We identify two primary challenges: First, when invoking
the controllable transferFrom our analysis must provide
both a valid user address and an ERC20 token with an al-
lowance. However, there may currently be no valid victim

users (e.g., the contract is approved to manage users’ funds,
but the users do not currently hold a token balance). When
this happens, we must determine whether the attack would
work if valid victim users existed.

Second, in certain cases, reaching the vulnerable call re-
quires not only specific inputs, but also successful interac-
tions with external “accessory” contracts. For example, the
CANDIDATE contract might call a decentralized exchange’s
getCurrentPrice function, and continue execution only if
the price returned is above 10. If the address of the accessory
contract is predetermined, we rely on symbolic execution
to craft a valid interaction. Instead, if the address is user-
controllable, we must identify or craft an appropriate smart
contract (that would result in a successful interaction) and use
its address in order to make progress in the execution.

We design two mechanisms to (1) automatically deploy
a synthetic victim user with arbitrary token balance and al-
lowance and (2) automatically deploy an attacker-controlled
synthetic accessory contract to support our analysis.

Synthetic Victim Users. To determine whether the attack
would work if victim users existed, we automatically craft syn-
thetic victim users with a positive token balance and enough
allowance for the CANDIDATE contract to transfer tokens on
their behalf. To do so, OSPREY automatically identifies (a) a
valid ERC20 token and (b) the token’s storage slot where the
user balance resides.

First, after creating a fresh Ethereum address for the vic-
tim user, we leverage symbolic execution to identify valid
ERC20 token addresses that are compatible with the accumu-
lated constraints. If the address of the ERC20 token is fully
controllable, we simply use USDC [7].

Then, we analyze the chosen ERC20 token to determine
the storage slot where the user balance is stored. More pre-
cisely, we invoke the ERC20 standard function balanceOf
(in our local, simulated environment) to retrieve the balance
of the synthetic victim user. This allows us to dynamically
observe all storage accesses — typically few storage reads. By

matching the function’s return value with the accessed storage
values, we infer where the balance is stored, and overwrite it
with a chosen arbitrary value x.

Finally, we invoke the approve function on behalf of the
synthetic victim user, specifying the CANDIDATE contract as
the spender and the same chosen value x as the allowance.

Synthetic Accessory Contracts. Most CANDIDATE contracts
do not operate in isolation. Instead, they commonly interact
with external contracts such as price oracles and ERC20 to-
kens. We refer to all such contracts as “accessory contracts”.

While the semantics of these interactions are unknown
at analysis time, symbolic execution tells us what expected
responses should look like (expressed in the form of sym-
bolic constraints). Sometimes, the attacker has little control
over the address of the accessory contract. If so, we allow
symbolic execution to choose feasible inputs that satisfy the
symbolic constraints (without analyzing the target contract).
At other times, the address of the accessory contract is itself
controllable. For example, in Figure 5, we show a variation of
the execute function presented in Section 3. The execute?2
function takes two input parameters (registry and data)
and does not allow direct control of the executor address. In-
stead, it queries the registry contract to obtain that address.

OSPREY automatically recognizes that the address of the
registry contract is attacker-controllable, and leverages the
accumulated symbolic constraints to concretize the return
value of the CALL instruction (Line 3). This allows OSPREY
to compile and deploy the bytecode of a contract that re-
turns exactly the value that is (symbolically) shown to work.
Connecting back to the example in Figure 5, OSPREY (a)
determines that the Lending contract calls the executor con-
tract with arbitrary calldata, (b) determines that the executor
address is returned by the call to the registry contract at
Line 2, (c) determines that the address of the registry con-
tract is attacker-controllable, (d) compiles and deploys a cus-
tom (registry) contract that returns the address of an ERC20
token (the "executor") and finally (e) calls the execute ()
function to launch the attack.

In summary, the interplay between concrete and symbolic
execution allows us to execute deep functionality in the vul-
nerable contract’s code, which is often required to reach the
vulnerable t ransferFrom function call and synthesize a suc-
cessful exploit.

Failure Analysis. In the previous paragraphs, we discussed
our approach to modeling both the contract logic (with sym-
bolic execution) and the external interactions (using synthetic
victim users and synthetic accessory contracts). Sometimes,
the concrete execution does not reach the transferFrom
function. If the concrete execution otherwise completes suc-
cessfully (that is, it does not revert), we complete the analysis
with no warning. This often happens when specific storage
values (from the concrete blockchain state) conflict with the
values expected by symbolic execution.

If the execution, on the other hand, reverts, we aim to deter-

mine whether it reverts “by design” (i.e., there are explicit
access control checks) or whether the contract logic and ex-
ternal interactions are simply too complex for our analysis to
handle (and the contract might be vulnerable after all). In the
following paragraphs, we will discuss how, in practice, we
distinguish between these two cases.

Access Control. Often, the execution reverts simply because
the (concrete) attacker address is not allowed to execute the
smart contract. That is, there are access control checks in place
that prevent the attacker from reaching (and invoking) the
vulnerable function. The three most common access control
patterns in smart contracts are:

* Identity-based. The contract compares msqg. sender to
a constant value or a value loaded from storage.

* Role-based. The contract looks up msg.sender in a
mapping variable that associates addresses with roles
(e.g., owner) and permissions.

* Oracle-based. The contract queries an external oracle
(contract) to confirm whether msg. sender is authorized.

As shown by previous research [21, 60], identifying these
access control patterns can be challenging. For this reason,
in our previous analysis stage (@), we do not attempt to
statically (symbolically) model any access control pattern.
That is, both the environment and the msg.sender values
are symbolic, ensuring that any such access control check
would succeed. Instead, we defer this analysis until the con-
tract is concretely executed. In doing so, we can observe all
instructions that are executed, allowing us to implement sim-
ple heuristics to detect access control patterns effectively. We
observe that, during an access control sequence, the contract
executes the CALLER instruction to fetch the address of the
msg.sender. Moreover, if the access control check fails, the
contract executes the REVERT instruction. We leverage these
observations to determine whether a failure could have re-
sulted from a prior access control check. Our heuristic works
as follows: When the execution reverts, we look at the in-
structions executed directly before the REVERT instruction —
ignoring the instructions executed by any accessory contract.
If these instructions include the CALLER instruction (which re-
trieves msg. sender), we classify the failure as access control-
related. In Section 5.2, we evaluate the effectiveness of this
heuristic. We find that, despite its simplicity, it is effective.
Warnings. If we determine that the execution reverted, but
not because of an access control check, we emit a warning.
We associate this warning with a confidence level — low if the
execution reverts before the transferFrom, high otherwise.
Our intuition is that most of the contract’s logic is expected
to execute before the tranferFrom function call. Therefore,
being able to reach (and execute past) the controllable func-
tion call suggests that an exploit might be viable with further
(manual) effort.

(w1) Post-transferFrom warning. In some cases, the execu-
tion successfully reaches the controllable t ranferFrom.
Nonetheless, to complete the transaction, the execution
must return successfully — that is, not revert. For exam-
ple, the input data might be structured as a list of actions
— that our analysis failed to model. Since we expect the
transferFrom to be past most of the contract’s logic,
we consider these high-confidence warnings.

(wp) Pre-transferFrom warning. In other cases, the
execution reverts before reaching the controllable
tranferFrom. This often happens because the contract
expects a certain input (e.g., an accessory contract ad-
dress) that our analysis failed to model (e.g., the contract
looks up the provided address in a mapping). Since we
expect most of the contract’s logic to execute before
the tranferFrom function call, and since, in this case,
the call could not be reached, we consider these low-
confidence warnings.

In Section 5.2, we evaluate the quality of these warnings
and confirm that, in some cases, it is possible to manually craft
an exploit even if our analysis failed to do so automatically.

4.3 Exploit Generation and Impact Analysis

To estimate the impact of a generated exploit, we leverage
our knowledge of all historical approvals and automatically
synthesize one targeted exploit for each approver-token pair
with both balance and allowance. Then, as detailed below, we
use Uniswap [56] (a well-known decentralized exchange) to
estimate the monetary impact of the exploits.

O Automatic Exploit Generation. Given a successful attack
against a VULNERABLE contract, we leverage our knowledge
from @ to retrieve the current allowances and balances of
all users that have historically approved the VULNERABLE
contract as a spender. We identify as victims all those users
with both a positive allowance and a positive balance. More
precisely, we calculate the maximum number of tokens that
can be stolen from each user as min (allowance, balance).
We combine this information with the successful attack re-
ported in @ to construct a real execution scenario that leads
to the theft of all approved user assets.

@ Impact Analysis. To estimate the practical market value
of the stolen assets, we interact with the Uniswap v2 and
Uniswap v3 exchanges and trade the stolen assets for an eas-
ily priceable asset — Ether. Importantly, even when the stolen
assets have no practical estimated market value, one should
always keep in mind that (1) the assets could have been valu-
able in the past, (2) the assets might be valuable in the future,
(3) a market for the assets may exist elsewhere, but not on
Uniswap, and (4) the assets (and the VULNERABLE contract)
could be highly valuable regardless of their estimated market
value °.

Number of Contracts

VULNERABLE 410
wi 117
wy 2,566
Access Control 14,053
Non-Controllable 14,441
Failed 995
Total 32,582

Table 1: Overview of the On-chain analysis results (€)).

5 Evaluation

For all our experiments, we use one server equipped with
512GB of RAM and dual Intel(R) Xeon(R) Gold 6330 CPUs.
We use GNU Parallel [51] to parallelize our tasks, and always
limit each task to 5SGB of RAM and either 10 or 60 minutes
of CPU time, depending on the task’s complexity.

Live evaluation. To demonstrate its practicality, we also de-
ploy OSPREY as a live detection system (Appendix C).

Preparation. We consider all Ethereum blocks and contracts
from its genesis block (July 2015) to block 19,380,000 (March
2024). We rely on a local deployment of the Erigon v2.56.0
client [27] to inspect transactions. Since there are more than
two billion external transactions in the Ethereum network at
the time of writing, inspecting and indexing these transactions
requires a substantial amount of time — approximately 30 days.
We consider this as a necessary one-off preparation step for
any work that aims to study the Ethereum blockchain.

5.1 Approved Contracts

@ Approval Filter. As discussed in Section 4.1, we lever-
age the standard ERC20 Approval logging mechanism to
observe and collect all on-chain approvals. In total, we ob-
serve 78,620,333 approvals. We determine that 424,676 ac-
counts (out of which 410,938 are contracts) were historically
approved as spenders. We refer to these contracts as the AP-
PROVED contracts.

Results Discussion. To understand the evolution of the ap-
provals ecosystem, we look at past approvals and study how
they change over time (see Appendix A). We find that the
majority of spenders only have a few approvals. Although
some spender contracts receive several million approvals, less
than 10% of the spenders receive more than 10 approvals.

We observe that approvals started being adopted at the
beginning of 2016 (block 1,022,258), just a few months after
the introduction of ERC20 in Ethereum (see Appendix B).
Since then, the number of ERC20 approvals has been steadily
growing. The growth of this ecosystem calls for automated
tools like OSPREY to ensure the security of the involved
contracts and their users.

2In one of the most significant known attacks [39] (shown in Table 3) the
stolen assets are financial derivatives whose value is hard to estimate.

5.2 Controllable TransferFrom

@ Off-chain Controllability. We first run our Off-chain
Controllability analysis against all the APPROVED contracts
to identify the CANDIDATE contracts. That is, we use
symbolic execution to simulate the execution of the AP-
PROVED contracts. Given a (contract, function, call)
tuple, OSPREY determines whether call can be controlled
by an attacker who invokes the public function of the
contract (with appropriate arguments) under an ideal (en-
tirely symbolic) blockchain state. For each tuple (contract,
function, call), we set a CPU time limit of 10 minutes.
We observe a median execution time of 19 seconds.

Among all the APPROVED contracts, we identify 32,582
contracts with a controllable transferFrom call — i.e., the
CANDIDATE contracts — and 339,957 contracts without a con-
trollable transferFrom call. For the remaining 38,399 con-
tracts (9% of all APPROVED contracts), our analysis fails.
Specifically, in 38,176 cases, the analysis times out. In 223
cases, the analysis exhausts the memory.

© On-chain Controllability. We then run our On-chain
Controllability analysis against all 32,582 reported CANDI-
DATE contracts. To do this, we use a combination of sym-
bolic and concrete execution to simulate the execution of the
CANDIDATE contracts. For each CANDIDATE contract, we
check all symbolically controllable (contract, function,
call) tuples. For each tuple, OSPREY attempts to determine
whether the call is controllable under a specific, concrete
blockchain state (the reference block 19,380,000). We limit
each task to 60 minutes of CPU time and observe a median
execution time of 41 seconds.

We find 410 contracts with a controllable transferFrom
call —i.e., the VULNERABLE contracts. We manually inspect
a random sample of 50 VULNERABLE contracts and confirm
that all the manually inspected contracts are indeed vulnerable.
Moreover, we find 14,053 contracts with access control checks
(which prevent us from reaching the target call instruction),
2,683 contracts with a warning (w; or wy), and 14,441 con-
tracts without a (concretely) controllable t ransferFrom call.
In the latter case, a t ransferFrom call might not be control-
lable in practice when the concrete environment is incom-
patible with OSPREY’s symbolic model. For example, the
symbolic execution may have assumed that an external call
could return the value true, but in practice, it always returns
false. For the remaining 995 contracts (3% of all CANDI-
DATE contracts), our analysis fails. In 896 cases, the analysis
times out. In 99 cases, the analysis exhausts the memory limit.
In Table 1, we present an overview of our results.

Access Control. We manually inspect a random sample of 50
(out of 14,053) contracts with access control checks and con-
firm that, in all cases, the execution was indeed guarded by an
access control policy. Note that some (more complex) access
control patterns might not be captured by our heuristic and
are instead (mistakenly) reported as low-confidence warnings.

However, since our heuristic captures the majority of access
control patterns, we consider this an acceptable error.

Warnings. Our analysis produces warnings for 2,683 con-
tracts. These contracts are worth reporting, but they need
further (manual) scrutiny as the automated analysis could
not directly synthesize a working exploit. Looking at the
two types of warnings introduced in Section 4.2, we observe
2,566 contracts with a pre-t ransferFrom warning (w,, low
confidence), and 117 contracts with a post-transferFrom
warning (w, high confidence). We manually inspect a ran-
dom sample of 50 warnings from each of these categories to
assess the quality of our results. Our results (presented be-
low) confirm that the distinction between high-confidence and
low-confidence warnings is meaningful in predicting likely
exploitable contracts.

For 19 out of 50 (38%) of the high-confidence (w;) warn-
ings, we could manually craft a fully working exploit. We
observe that OSPREY’’s automatic exploit generation failed to
model some of the contract’s external interaction with acces-
sory contracts — for example, when one of the arguments must
be a valid ERC20 token — and consequently failed to craft
valid input data. For 21 out of 50 (42%) w; warnings, we deter-
mine that the exploit might work under some circumstances.
For example, the affected contract is currently not functional
(paused) but would be exploitable if resumed. Finally, for the
remaining 10 out of 50 (20%) w| warnings, we determine that
the contract is likely not exploitable. In these cases, before
the attack transaction, the attacker must perform additional
actions that make the attack unprofitable. For example, the
attacker must transfer tokens to the affected contract.

For 16 out of 50 (32%) of the low-confidence (w;) warn-
ings, we determine that the exploit might work under some
circumstances. For example, in several cases, the token ad-
dress is checked against a whitelist, but the attacker might
be able to manipulate the whitelist. Such a scenario was ex-
ploited in at least one known real-world attack that caused
substantial losses [42]. For the remaining 34 out of 50 (68%)
wyp warnings, we determine that the contract is likely not ex-
ploitable. We observe that, in some of these cases, the access
control pattern was not properly captured by OSPREY. In
other cases, as mentioned before, an attack would require
additional actions that make it unprofitable.

5.3 Exploit Generation and Impact Analysis

O Automatic Exploit Generation. We run our Automatic
Exploit Generation analysis against all VULNERABLE con-
tracts: First, for each VULNERABLE contract, we retrieve
all user approvals (from @), involved tokens, and approved
amounts. Then, we combine this information with the success-
ful attacks (concrete executions) reported in @ to construct a
real execution scenario that leads to the theft of all approved
user assets — that is, an exploit. In some cases, we generate
multiple exploits against the same VULNERABLE contract to

Contract OSPREY JACKAL PS Block Impact (USD) Contract OSPREY JACKAL PS Impact (USD)
Found (@) Found (@) Actual
3271 VULN C 14,018,000 1.4M Socket [40] VULN C . 4.3M 3.3M
78e8 VULN C 14,043,200 1.3M Maestro [38] VULN C . 3.4M 500K
cf9c VULN 13,946,000 328K Unibot [37] VULN C . 1.4M 600K
18el VULN (¢ 14,658,800 100K Hashflow [36] VULN . . 214K 214K
bb43 VULN C 16,563,200 90K Bancor [1] VULN . C - -
2aaa VULN C 16,718,000 75K dYdX [13] wi . . 2.7M 2.2M
405e VULN 18,006,800 56K Rubic [35] (1) wi . . 1.IM 1.IM
b677 VULN 14,100,800 26K Rubic [35] (2) wi . . 804K 300K
40cd VULN C 17,052,800 21K Li-Fi [28] wi . . 597K 597K
d27e VULN C 14,525,600 13K brahTOPG [32] wi . . 93K 90K
34ad VULN C 14,525,600 12K Seneca [39] wo . . - -
86eb VULN 14,014,400 11K Rabby [33] wy . - 98K 98K
53b3 VULN 18,161,600 10K Revert [45] wy . . 24K 24K
23el VULN 17,121,200 9K Sorbet [20] . . . - -
Total 14 8 - - 3.4M Total 13 3 1 14.7M M

Table 2: (Selection of) previously unknown vulnerabilities
reported by OSPREY, JACKAL, and PRETTYSMART (PS). C:
CANDIDATE, VULN: VULNERABLE.

target multiple users, multiple tokens, or both. The analysis
in this stage is lightweight and takes less than 60 minutes to
generate all exploits.

We process all 410 VULNERABLE contracts and automati-
cally generate exploits for all of them. In total, we generate
778 fully working exploits at the reference block (19,380,000).
These exploits enable the theft of a variety of user assets (120
unique tokens) from a variety of users (275 unique approvers).

Exploits can become available over time as new users ap-
prove a VULNERABLE contract. Similarly, exploits become
unavailable when users revoke their approvals. To determine
the number of historical exploits, we run our automatic exploit
generations at intervals of 12 hours over the last 24 months
(from January 1st, 2022, to the reference block). In total, we
generate 2,728 fully working exploits — which enable the theft
of 625 tokens from 1,491 approvers.

@ Impact Analysis. Finally, we run our Impact Analysis on
all the automatically generated exploits. For each VULNER-
ABLE contract, we measure the impact of the vulnerability
as its maximum historical financial impact — across all au-
tomatically generated exploits. To do so, we use Uniswap
to estimate the value of the stolen assets (see Section 4). In
Table 2, we show a selection of (previously unreported) VUL-
NERABLE contracts with automatically generated exploits,
sorted by decreasing impact. In total, we report more than
3.4 million USD of latent financial impact from previously
unreported vulnerabilities. For each vulnerability, we report
the code hash of the VULNERABLE contract (truncated for
ethical reasons), the maximum historical financial impact, and
the corresponding block. The most notable previously unre-
ported vulnerability that we discover (with truncated code
hash 3271) has an impact of more than 1.4 million USD, and
several others also have a financial impact of more than 100
thousand USD.

Table 3: Comparison of OSPREY, JACKAL, and PRETTYS-
MART (PS) on our labeled dataset. C: CANDIDATE, wy: low-
conf. warning, wy: high-conf. warning, VULN: VULNERABLE.

5.4 Known Attacks

As discussed in Section 3, we are aware of 14 well-known
attacks against ACT vulnerabilities that fall in scope for this
paper. We manually inspect each attack to identify the exact
exploit transaction, the address of the vulnerable contract, the
signature of the vulnerable public function invoked by the
attacker, and the program location (i.e., the EVM program
counter) of the vulnerable transferFrom call. In doing so,
we create a manually curated and labeled dataset of 14 real-
world contracts that are known to be exploitable.

To further evaluate the effectiveness of our detection ap-
proach, we run all the stages of our analysis against this
dataset and present our results in Table 3. As expected, OS-
PREY finds at least one approval event for each known attack
(@) and, therefore, reports all the contracts as APPROVED.
We then run our Off-chain analysis (@) on all contracts. The
analysis executes successfully on 13 of these contracts, which
we report as CANDIDATE contracts. For one of the contracts
(Sorbet [20]), our symbolic analysis times out. We manually
confirm that the contract’s vulnerable public function takes
multiple dynamically sized arrays as input (encoding differ-
ent “actions”), which is challenging to model symbolically.
OSPREY identifies 5 (out of 13) CANDIDATE contracts as VUL-
NERABLE (@), and automatically generates exploits for each
of these contracts (@). For the remaining 8 contracts, OS-
PREY emits 5 high-confidence warnings and 3 low-confidence
warnings. Our results highlight the importance of our tiered
warning classification system: Automatically generating an
end-to-end exploit is often hard because of the complexity of
these real-world contracts. Nonetheless, OSPREY is able to
detect issues worthy of review. In summary, OSPREY success-
fully detects issues for all but one of the known attacks.

Finally, we assess the financial impact of the generated
exploits (@) and the potential financial impact of the reported

warnings. We then compare our estimate with the amount that
was stolen during the attack — the “Actual” impact reported in
Table 3. In some cases (Bancor [1] and Seneca [39]), OSPREY
could not estimate the financial impact. In all such cases,
we manually confirm that the stolen assets are not traded on
Uniswap and, therefore, cannot be automatically priced. Sur-
prisingly, this comparison allows us to observe that, in many
other cases, the real-world attacks were actually not optimal.
In total, we find 5.7 million USD of additional financial dam-
age that could have resulted from the optimal attacks (and
that were automatically generated by OSPREY).

5.5 Comparison with Existing Systems

We compare OSPREY against two state-of-the-art systems that
perform generic detection of controllable calls: PRETTYS-
MART [60] and JACKAL [23]. We compare their performance
against our curated dataset of known attacks and against all
Ethereum smart contracts — as shown in Table 2 and Table 3.
In our experiments, OSPREY demonstrates detection efficacy
far exceeding prior work.

PrettySmart. PRETTYSMART implements a static taint analy-
sis built on top of the Gigahorse [22] binary lifting framework.
While this analysis can flag potential controllable calls, it is
unable to verify the actual feasibility of the associated execu-
tion paths. Thus, we consider its reports (of controllable calls)
as CANDIDATE contracts and compare them with the results
of our stage @. From the results reported in the paper [60],
PRETTYSMART flags 268 smart contracts with potentially
controllable call statements. Unfortunately, the authors do not
apply any filtering to identify APPROVED contracts (@) — or to
restrict their reports to transferFrom calls. We find that only
10 of the reported vulnerable smart contracts have received
user approvals. Moreover, PRETTYSMART does not flag any
of the attacks reported in Table 2. We manually inspect the
10 contracts flagged by PRETTYSMART and confirm that 2
of them are vulnerable to ACT vulnerabilities: Bancor [1]
and TransitSwap [34]. Bancor is also detected by OSPREY.
TransitSwap is out-of-scope for our work because it requires
chaining multiple vulnerabilities, nevertheless, we confirm
that OSPREY identifies the ACT vulnerability.

Since the source code of PRETTYSMART is publicly avail-
able, to provide a fair comparison, we modify its analysis
to use the same time limits reported in Section 5. Then,
we run PRETTYSMART against all APPROVED contracts in
our dataset. PRETTYSMART flags 17,669 smart contracts
with potentially controllable call statements (as opposed to
32,582 CANDIDATE contracts reported by OSPREY). We
manually inspect 100 of the flagged contracts and find that
92 are false positives. For 78 of these false positive con-
tracts, the transferFrom “from” parameter (the victim’s ad-
dress) is equal to the attacker’s address — that is, the attacker
could only exploit themselves. For 5 of these contracts, the
transferFrom call is guarded by an access control policy.

For 9 contracts, the attack is unfeasible due to other logic
checks — for example, transferFrom can only be executed
after creating an “order.” The remaining 8 detections are true
positives. We confirm that OSPREY also identifies these con-
tracts as potentially vulnerable.

Jackal. JACKAL uses static taint analysis to flag potentially
controllable calls, and a combination of symbolic execution
and concrete execution to synthesize valid inputs (calldata)
that execute the target call. This allows JACKAL to verify
that the target call is reachable (dynamically) through con-
crete execution. This difference sets JACKAL apart from other
purely static approaches such as PRETTYSMART. Nonethe-
less, JACKAL does not model ACT vulnerabilities and instead
implements a more generic analysis to detect function calls
where every argument is attacker-controllable.

First, we evaluate JACKAL'’s static analysis reports, which
we consider comparable to the results of our stage @. Since
the source code of JACKAL is publicly available, we modify
JACKAL’s analysis to use the same time limits reported in
Section 5. Then, we run this analysis against all APPROVED
contracts in our dataset. JACKAL flags 2,214 smart contracts
with potentially controllable call statements (as opposed to
32,582 CANDIDATE contracts reported by OSPREY). Similar
to PRETTYSMART, the authors do not apply any filtering to
identify APPROVED contracts (@) - or to restrict their reports
to transferFrom calls.

Second, we evaluate JACKAL’s dynamic analysis reports,
which we consider comparable to the results of our stage €.
JACKAL dynamically confirms the reachability of the call for
325 out of 2,214 reported CANDIDATE contracts. Importantly,
JACKAL does not verify that the t ransferFrom was executed
successfully. For this reason, we consider the severity of these
reports equivalent to OSPREY’s w, warnings.

In summary, we show that OSPREY is significantly more
effective in detecting ACT vulnerabilities. The reasons are
twofold. First, OSPREY analyzes all possible paths from a
contract’s entry point to the candidate CALL to assess whether
it can be controlled. Instead, JACKAL only analyzes a single
representative path for each candidate call. Second, OSPREY
does not only look for fully controllable CALLs, but instead
looks for any degree of controllability that would allow an
attacker to execute an ACT attack.

5.6 Other Standards

The conceptual approach presented in this paper is applicable
to arbitrary token standards with approvals (e.g., ERC721,
ERC1155), arbitrary approval mechanisms (e.g., Permit2),
and arbitrary EVM-compatible blockchains (e.g., Binance).
To demonstrate this, we evaluate OSPREY against Permit2
approvals and ERC721 approvals.

Permit2. There are some notable differences between Per-
mit2 and the classic approval mechanism. First, when us-
ing Permit2, a user does not directly approve a contract as

the designated spender for a token. Instead, the user first ap-
proves the Permit2 contract as the designated spender and
then approves other contracts to move their tokens through
the Permit2 contract — by calling Permit2.approve. Second,
the signature of Permit2.transferFrom differs from the re-
spective ERC20 function and takes an additional argument
to specify the desired token. With the following considera-
tions, our approach works the same on Permit2 approvals as
it does for traditional approvals: (1) The approval filter @)
must observe approvals directed to the Permit2 contract. (2)
The symbolic analysis (@)/@) must constrain the target of
the transferFrom call to be the Permit2 contract and verify
that the additional argument “token” is a valid ERC20 token.
(3) The procedure used to create synthetic victim users must
approve the Permit2 contract.

We run our analysis pipeline to detect and exploit controllable
Permit2.transferFrom function calls. We leverage the
Approval logging mechanism to observe and collect 95,485
Approval events. Then, we study these events and identify
1,178 APPROVED contracts. We run our off-chain analysis
(@) on all APPROVED contracts, and report 86 CANDIDATE
contracts with a symbolically controllable transferFrom
function call. Finally, we run our on-chain analysis (@) on all
reported CANDIDATE contracts and identify one VULNERA-
BLE contract — with a controllable transferFrom call. Upon
manual verification, we confirm that the contract is indeed
vulnerable at the time of writing.

ERC721. ERC721 is a widely adopted standard for non-
fungible tokens (i.e., NFTs) on Ethereum. The standard
implements an approval mechanism equivalent to the
ERC20 approval mechanism. More precisely, ERC721 im-
plements a function approve (spender, tokenid) that
sets the allowance for the NFT tokenid and a func-
tion setApprovalForAll that sets the allowance simul-
taneously for all NFTs in a collection. The function
ERC721.transferFrom transfers the NFT tokenid only if
msg.sender was previously approved. Additionally, ERC721
implements a safeTransferFrom function that only trans-
fers the NFT if the receiver can handle ERC721 transfers —
i.e., if it implements the function onERC721Received.

We run our analysis pipeline to detect and exploit con-
trollable ERC721.transferFrom function calls. First, we ob-
serve and collect 32,056,048 approval events.Then, we au-
tomatically study these events and identify 1,143,747 AP-
PROVED contracts. We run our off-chain analysis (@) on all
APPROVED contracts and find 23,569 CANDIDATE contracts
with a symbolically controllable t ransferFrom function call.
We run our on-chain analysis (@) on all the reported CANDI-
DATE contracts, and find 18 VULNERABLE contracts with a
controllable transferFrom.

We manually confirm that 17 of the 18 vulnerable contracts
are indeed vulnerable in practice and are all exploitable at the
time of writing — that is, with active user approvals. One of the
vulnerable contracts is not exploitable because it constrains

(forces) the “from” address to be equal to the “to” address,
thus rendering the attack pointless.

We also report 116 high-confidence (w) warnings and 219
low-confidence (w;) warnings. We manually inspect a ran-
dom sample of 50 warnings from each of these categories to
assess the quality of our results. For 38 out of 50 (76%) of
the high-confidence warnings, we determine that the contract
is indeed vulnerable. For example, in some cases the attack
calldata was simply misaligned because of symbolic analysis
imprecisions. For the remaining 12 out of 50 (24%) w, warn-
ings, we determine that the contract is likely not exploitable.
For example, in some cases the attack requires payment of
Ether in exchange for the NFT - effectively purchasing the
NFT. For 8 out of 50 (16%) of the low-confidence warnings,
we determine that the contract is indeed vulnerable. For ex-
ample, some attacks require setting a public storage variable
beforehand. For the remaining 42 out of 50 (84%) w, warn-
ings, we determine that the contract is likely not exploitable.
In most of these cases, the attack requires exchanging Ether
or other assets as a form of payment for the NFT.

The outcome of our manual verification aligns with the
results discussed in Section 5.2, and further demonstrates
the effectiveness of our warning tiers in predicting likely
exploitable contracts.

6 Discussion and Limitations

Access Control. In this work, we consider only victim con-
tracts that can be called by an arbitrary blockchain user (i.e.,
we discard CANDIDATE contracts that include some form
of access control). However, it may still be possible for an
advanced attacker to craft an exploit against these contracts.
Smart contracts use access control policies to establish a
group of “trusted accounts” that are allowed to execute privi-
leged functionality. A trusted account can be either a smart
contract or a blockchain user. Sometimes, it is possible for
an attacker to circumvent this mechanism. For example, the
attacker might be able to manipulate the contract’s internal
state to escalate their own privileges. Alternatively, it might
be possible to compromise one of the trusted accounts, and
consequently gain access to the contract’s privileged function-
ality using the trusted account’s identity. Researchers have
proposed several techniques to identify sensitive functions
with missing access control checks [6, 21], manipulate the
contract’s state to add new privileged users [60], and confuse
a trusted account (contract) to execute privileged functional-
ity on the attacker’s behalf [23, 60]. In summary, an attacker
could find a way (e.g., using a second vulnerability) to bypass
an access control policy and exploit an ACT vulnerability that
we currently consider unreachable.
Synthetic Accessory Contracts. When the address of an
accessory contract is controllable, we leverage symbolic exe-
cution to automatically synthesize the contract, allowing our
analysis to progress (see Section 4.2). OSPREY operates under

the assumption that accessory contracts are invoked via CALL
instructions rather than STATICCALL. This allows for stateful
interactions, that is, the accessory contract might respond dif-
ferently when called multiple times. OSPREY assumes that
stateful interactions are always possible and automatically
simulates these interactions to verify the exploit. On the other
hand, when a contract is invoked via a STATICCALL, it cannot
make changes to its state. To support stateful interactions in
such a setting, one would need to incorporate other mecha-
nisms such as measuring GAS consumption to automatically
differentiate between multiple STATICCALL invocations. We
defer the implementation of advanced synthetic accessory
contracts as a promising avenue for future work.

Other Accessory Contracts. When the address of the acces-
sory contract is not controllable, it might still be possible to
craft an input (for the accessory contract) that executes the
desired behavior. For example, symbolic execution could be
used to study the accessory contract and derive an appropriate
input that furthers our analysis. However, symbolically ex-
ploring all accessory contracts is computationally demanding
and would limit the scalability of our approach. Hence, we
defer this to future work.

7 Related Work

Controllable Calls. PRETTYSMART [60] employs a static
taint analysis to flag potential controllable calls. However, it
cannot verify the feasibility of the associated execution paths
(i.e., it lacks automatic synthesis of example attack transac-
tions). AV VERIFIER [50] also uses static analysis to detect
improper sanitization of the destination address of an out-
bound call. In contrast, the main objective of our work focuses
on the degree of control over the arguments of the outbound
call (in addition to the destination address). JACKAL [23]
incorporates symbolic and concrete execution and, thus, can
validate its findings, similar to OSPREY. Despite that, JACKAL
seeks to detect controllable calls generically, whereas OS-
PREY is specialized to find ACT vulnerabilities. We compare
our work against both JACKAL and PRETTYSMART in Sec-
tion 5. SECURIFY 2.0 [53] also employs static analysis to
detect unsafe calls, but only reports unsafe DELEGATECALL in-
structions, which is not the focus of this paper. Several other
works (SECURIFY [54], MAIAN [41], and TEETHER [26])
identify “stealing Ether” vulnerabilities: where an attacker
could cause a smart contract to execute a CALL with nonzero
value (thus, transferring the native currency, Ether). This
is different from our work, as we analyze the complex ar-
guments to a call (not just the basic value) to understand
whether the degree of control is sufficient to trigger the ap-
proved ERC20 token transfer (not a native Ether transfer).
CoNFuzz1us [52], a smart contract hybrid fuzzer, detects un-
safe DELEGATECALL instructions, but only does so with naive
invariants, and does not consider the degree of control over
the parameters themselves.

Access Control. ACHECKER [21] detects access control vul-
nerabilities by combining static analysis (which identifies
control variables) and symbolic execution (which searches for
paths bypassing checks over these control variables). ETHAIN-
TER [6] focuses on static taint propagation to detect access
control on paths to selfdestruct in publicly callable func-
tions. Both ACHECKER and ETHAINTER generate warnings
that require manual validation. Unfortunately, neither of these
techniques can detect all forms of access control patterns.
Our access control detection heuristic is simple, yet effective
enough to suit our needs.

ERC20 Bugs. CPMM-EXPLOITER [25], a grammar-based
fuzzer, identifies ERC20 tokens that allow an attacker to ma-
nipulate balances of other accounts unexpectedly (either in-
creasing or decreasing) in order to perform DeFi exploits.
These vulnerabilities are outside the scope of this work, which
focuses on ERC20 token approvals. CLOCKWORK FINANCE
FRAMEWORK [4] is a model-checking framework that synthe-
sizes arbitrary money-making attacks against DeFi devices,
including ERC20 tokens. However, each involved smart con-
tract must be manually translated into its specification lan-
guage, which does not scale.

Non-ACT Vulnerabilities. Industry-standard tools such as
MYTRHIL [9] are widely used by professional smart contract
auditors. Ma et al. [30] proposed a symbolic analysis method
to explore inter-contract control-flow graphs and detect clas-
sic bugs like re-entrancy and arithmetic issues. Frank et al.
introduced ETHBMC [19], a bounded model checker sup-
porting symbolic execution and automatic exploit generation
for smart contract bytecode, even with external interactions.
Fuzzing-based systems have also been developed, such as
XFuzz [58], which uses machine learning on the contract’s
source code to filter benign cross-contract execution paths,
and EF4CF [47], which requires only contract bytecode.

8 Conclusions

In this paper, we introduce a novel system, OSPREY, to detect
Approved Controllable TransferFrom (ACT) vulnerabilities in
Ethereum smart contracts. Our system uses a combination of
static analysis, symbolic execution, and concrete execution to
(1) enable a deep understanding of on-chain token approvals,
(2) study the constraints at the call site to determine the degree
of control that the attacker has over the execution, and (3)
automatically generate semantically correct interactions to
exploit the ACT vulnerability.

We evaluate OSPREY against 424,676 Ethereum smart con-
tracts with user approvals. OSPREY identifies 32,582 contracts
with potential ACT vulnerabilities, and successfully crafts
proof-of-concept attacks for 410 of these contracts. The latent
financial impact of our (previously unknown) automatically
generated exploits exceeds 3.4 million USD.

Acknowledgments

This material is based upon work supported by NSF under
Award No. CNS-2334709. Any opinions, findings, and con-
clusions or recommendations expressed in this publication
are those of the author(s) and do not necessarily reflect the
views of the NSF.

A Approvals Among Spenders

100

P

80 4

70 4

Percentage of spenders

60 —— CDF

90th percentile
95th percentile
99th percentile

T T
10° 10! 10? 10?
Number of approvals (Log)

Figure 6: Cumulative distribution of number of approvals
(log) among spenders (percentage).

B Approvals Over Time

10°

106 B

10% 4

Cumulative number of approvals (Log)

—— All Approvals

100 4 === Unique Spenders

1 T T T T T T
1M 4M ™ 10M 13M 16M 19M
Time (Block)

Figure 7: Cumulative number of approvals (log) over time
(block).

C Live Evaluation

To further evaluate OSPREY ’s practicality, we deployed it to
continuously monitor the live Ethereum blockchain. In this
setup, we run every stage of OSPREY ’s analysis on a single
server with the same configuration discussed in Section 5.
In practice, we observed both minimal processing delay —
that is, each block is processed as soon as it is synced to our
local client — and minimal resource consumption — that is, the
observed CPU load is below 10% on average, the observed
RAM memory usage is below S0GB on average.

Over the course of two weeks of continuous monitoring,
OSPREY automatically generated one new exploit, produced
two new high-confidence warnings, and identified additional
at-risk approvals in contracts previously flagged as vulnera-
ble. Our results demonstrate OSPREY ’s ability to scale to
real-time workloads while maintaining the in-depth analysis
required to detect ACT vulnerabilities at scale.

Ethics Considerations

Our study targets Approved Controllable TransferFrom (ACT)
vulnerabilities in Ethereum smart contracts and does not in-
volve human subjects. All our experiments were conducted
on a private blockchain fork to avoid any potential harm to
existing real-world systems. Similarly, all the discovered ex-
ploits have been verified exclusively on our private blockchain
fork, and never on the public Ethereum mainnet. To prevent
malicious use of our findings, all the vulnerabilities reported
in this submission have been anonymized, and no identifiable
information about affected contracts (or users) is disclosed.

In compliance with responsible disclosure practices, we
reported all confirmed vulnerabilities to the Cybersecurity
and Infrastructure Security Agency [8], giving stakeholders
the opportunity to address these flaws before any public re-
lease of our system. Our actions align with the principles of
beneficence and respect for the law and public interest out-
lined in the Menlo Report [5], as our work aims to enhance
security in the broader decentralized finance (DeFi) ecosys-
tem without causing harm to individuals or organizations. By
demonstrating the feasibility of exploits solely in a controlled
setting and by alerting the relevant authorities, we have taken
all reasonable measures to ensure ethical conduct throughout
this research.

Open Science

In the spirit of transparency and reproducibility, we will re-
lease our system and supporting dataset to the community *» *.
Any sensitive details pertaining to the identified vulnerabili-
ties will remain anonymized, and we will include instructions
and necessary scripts to replicate our analyses in a manner
that poses minimal risk to the affected contracts.

3https://github.com/ucsb-seclab/osprey
4https://zenodo.org/records/15599087

https://github.com/ucsb-seclab/osprey
https://zenodo.org/records/15599087

References

[1] linch Network. Bancor network hack. https:
/ /medium.com/linch-network/bancor-network—
hack-2020-3¢c71444£d59d, 2020.

[2] Aave Protocol. Aave. https://aave.com/, 2024.

[3] ApeX. ApeX Protocol. https : / /
www.apex.exchange/, 2024.

[4] Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari
Juels. Clockwork finance: Automated analysis of eco-
nomic security in smart contracts. In 2023 IEEE Sym-
posium on Security and Privacy (SP), pages 2499-2516.
IEEE, 2023.

[5] M. Bailey, E. Kenneally, D. Maughan, and D. Dittrich.
The menlo report. pages 71-75, Los Alamitos, CA,
USA, mar 2012. IEEE Computer Society.

[6] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard
Scholz, and Yannis Smaragdakis. FEthainter: a smart
contract security analyzer for composite vulnerabilities.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 454-469, 2020.

[7] Circle. Fully backed digital dollars. https://
www.circle.com/en/usdc, 2024.

[8] CISA. Cybersecurity and infrastructure security agency.
https://www.cisa.gov, 2024.

[9] ConsenSys. Mythril. https://github.com/
ConsenSys/mythril, 2022.

[10] Consensys, Inc. What is a token approval? https:
/ / support.metamask.io/es/transactions-and-
gas/transactions/what-is—-a-token-approval/,

2024.

[11] DefiLlama. Ethereum - defillama. https://
defillama.com/chain/Ethereum, 2024.

[12] DefiLlama. Hacks - defillama. https://
defillama.com/hacks, 2024.

[13] dYdX. Deposit contract post mortem. https:
/ / dydx.exchange / blog / deposit - proxy — post -
mortem, 2021.

[14] Ethereum. Erc-1155 token standard. https://
ethereum.org/en/developers/docs/standards/
tokens/erc-1155/, 2023.

[15] Ethereum. Erc-721 token standard. https://
ethereum.org/en/developers/docs/standards/
tokens/erc-721/,2023.

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Ethereum. Erc-20 token standard. https://
ethereum.org/en/developers/docs/standards/
tokens/erc-20/,2024.

Ethereum. Erc-4626 token standard. https://
ethereum.org/en/developers/docs/standards/
tokens/erc-4626/,2024.

Ethereum. Ethereum. https://ethereum.org/en/,
2024.

Joel Frank, Cornelius Aschermann, and Thorsten Holz.
Ethbmc: A bounded model checker for smart contracts.
In Proceedings of the 29th USENIX Conference on Se-
curity Symposium, pages 2757-2774, 2020.

Gelato Network. Sorbet finance vulnerability post
mortem. https://medium.com/gelato-network/
sorbet — finance-vulnerability-post -mortem-—
6£8fba78£109, 2022.

Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman.
Achecker: Statically detecting smart contract access
control vulnerabilities. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE),
pages 945-956. IEEE, 2023.

Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yan-
nis Smaragdakis. Elipmoc: advanced decompilation of
ethereum smart contracts. Proceedings of the ACM on
Programming Languages, 6(O0OPSLA1):1-27, 2022.

Fabio Gritti, Nicola Ruaro, Robert McLaughlin,
Priyanka Bose, Dipanjan Das, Ilya Grishchenko,
Christopher Kruegel, and Giovanni Vigna. Confusum
contractum: confused deputy vulnerabilities in ethereum
smart contracts. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1793-1810, 2023.

Halborn. Explained: The stablemagnet rug-pull. https:
/ /www.halborn.com/blog/post /explained-the-
stablemagnet-rugpull-june-2021, 2021.

Sujin Han, Jinseo Kim, Sung-Ju Lee, and Insu Yun. Au-
tomated attack synthesis for constant product market
makers, 2024.

Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In 27th USENIX Security Symposium (USENIX Security
18), pages 1317-1333, 2018.

ledgerwatch. Erigon. https ://github.com/
ledgerwatch/erigon, 2024.

Li.Finance. Li.fi smart contract vulnerability post
mortem. https://blog.li.fi/20th-march-the-
exploit-e9elc5c03eb9, 2022.

https://medium.com/1inch-network/bancor-network-hack-2020-3c71444fd59d
https://medium.com/1inch-network/bancor-network-hack-2020-3c71444fd59d
https://medium.com/1inch-network/bancor-network-hack-2020-3c71444fd59d
https://aave.com/
https://www.apex.exchange/
https://www.apex.exchange/
https://www.circle.com/en/usdc
https://www.circle.com/en/usdc
https://www.cisa.gov
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://support.metamask.io/es/transactions-and-gas/transactions/what-is-a-token-approval/
https://support.metamask.io/es/transactions-and-gas/transactions/what-is-a-token-approval/
https://support.metamask.io/es/transactions-and-gas/transactions/what-is-a-token-approval/
https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum
https://defillama.com/hacks
https://defillama.com/hacks
https://dydx.exchange/blog/deposit-proxy-post-mortem
https://dydx.exchange/blog/deposit-proxy-post-mortem
https://dydx.exchange/blog/deposit-proxy-post-mortem
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-4626/
https://ethereum.org/en/developers/docs/standards/tokens/erc-4626/
https://ethereum.org/en/developers/docs/standards/tokens/erc-4626/
https://ethereum.org/en/
https://medium.com/gelato-network/sorbet-finance-vulnerability-post-mortem-6f8fba78f109
https://medium.com/gelato-network/sorbet-finance-vulnerability-post-mortem-6f8fba78f109
https://medium.com/gelato-network/sorbet-finance-vulnerability-post-mortem-6f8fba78f109
https://www.halborn.com/blog/post/explained-the-stablemagnet-rugpull-june-2021
https://www.halborn.com/blog/post/explained-the-stablemagnet-rugpull-june-2021
https://www.halborn.com/blog/post/explained-the-stablemagnet-rugpull-june-2021
https://github.com/ledgerwatch/erigon
https://github.com/ledgerwatch/erigon
https://blog.li.fi/20th-march-the-exploit-e9e1c5c03eb9
https://blog.li.fi/20th-march-the-exploit-e9e1c5c03eb9

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Martin Lundfall. Permit extension for eip-20 signed
approvals. https://eips.ethereum.org/EIPS/eip-
2612, 2020.

Fuchen Ma, Zhenyang Xu, Meng Ren, Zijing Yin, Yuan-
liang Chen, Lei Qiao, Bin Gu, Huizhong Li, Yu Jiang,
and Jiaguang Sun. Pluto: Exposing vulnerabilities in
inter-contract scenarios. IEEE Transactions on Software
Engineering, 2021.

Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and
Michael Hicks. Directed symbolic execution. In Inter-
national Static Analysis Symposium, 2011.

Neptune Mutual. Decoding brahtopg smart con-
tract vulnerability. https://neptunemutual.com/
blog / decoding - brahtopg - smart - contract -
vulnerability/, 2022.

Neptune Mutual. Decoding rabby’s smart contract
vulnerability. https : / / neptunemutual.com /
blog / decoding - rabbys - smart - contract -
vulnerability, 2022.

Neptune Mutual. Decoding transit finance’s con-
tract vulnerability. https://neptunemutual.com/
blog/decoding - transit - finances - contract -
vulnerability/, 2022.

Neptune Mutual. How was rubic protocol hacked?
https : / / neptunemutual.com / blog / how - was -
rubic-protocol-hacked/, 2022.

Neptune Mutual. How was hashflow exploited? https:
/ /neptunemutual.com/blog/how-was—-hashflow-
exploited/, 2023.

Neptune Mutual. Taking a closer look at unibot ex-
ploit. https://neptunemutual.com/blog/taking-
a-closer-look-at-unibot-exploit/, 2023.

Neptune Mutual. Understanding the maestro
exploit. https : / / neptunemutual.com/blog /
understanding-the-maestro-exploit/, 2023.

Neptune Mutual. How was seneca protocol ex-
ploited? https://neptunemutual.com/blog/how-
was—-seneca-protocol-exploited/, 2024.

Neptune Mutual. How was socket protocol ex-
ploited? https://neptunemutual.com/blog/how-
was—-socket-protocol-exploited/, 2024.

Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding the greedy, prodigal,
and suicidal contracts at scale. In Proceedings of the
34th Annual Computer Security Applications Confer-
ence, ACSAC ’18, page 653-663, New York, NY, USA,
2018. Association for Computing Machinery.

[42]

[43]

[44]
[45]

[46]
[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

Peckshield. Dexible hack. https: //x.com/
peckshield/status/1626493024879673344,2023.

Anton Permenev, Dimitar Dimitrov, Petar Tsankov,
Dana Drachsler-Cohen, and Martin Vechev. Verx: Safety
verification of smart contracts. In 2020 IEEE sympo-
sium on security and privacy (SP), pages 1661-1677.
1IEEE, 2020.

Rarible, inc. Rarible. https://rarible.com/, 2024.

Revert. An attack on v3utils. https :
/ / mirror.xyz / revertfinance.eth /
35dpQ3vIVEKi0jaHXUi3TdEfhleAXX1AEWeODrRHJLU,
2023.

Revoke.cash. Revoke. https://revoke.cash, 2024.

Michael Rodler, David Paallen, Wenting Li, Lukas Bern-
hard, Thorsten Holz, Ghassan Karame, and Lucas Davi.
Ef/cf: High performance smart contract fuzzing for
exploit generation. arXiv preprint arXiv:2304.06341,
2023.

Skrice Studios. Heroes of Mavia.
www.mavia.com/, 2024.

https://

Solidity Team and Ethereum Foundation. Solidity pro-
gramming language. https://soliditylang.org/,
2024.

Tianle Sun, Ningyu He, Jiang Xiao, Yinliang Yue, Xiapu
Luo, and Haoyu Wang. All your tokens are belong to
us: Demystifying address verification vulnerabilities in
solidity smart contracts. In The 33rd USENIX Security
Symposium, August 2024.

Ole Tange. Gnu parallel-the command-line power tool.
Usenix Mag, 36(1):42, 2011.

Christof Ferreira Torres, Antonio Ken Iannillo, Arthur
Gervais, and Radu State. Confuzzius: A data
dependency-aware hybrid fuzzer for smart contracts. In
2021 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 103—-119. IEEE, 2021.

Petar Tsankov. Securify 2.0. https://github.com/eth-
sri/securify2, 2020.

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 67-82,
2018.

UCSB SecLab. greed. https://github.com/ucsb-
seclab/greed, 2024.

https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/EIPS/eip-2612
https://neptunemutual.com/blog/decoding-brahtopg-smart-contract-vulnerability/
https://neptunemutual.com/blog/decoding-brahtopg-smart-contract-vulnerability/
https://neptunemutual.com/blog/decoding-brahtopg-smart-contract-vulnerability/
https://neptunemutual.com/blog/decoding-rabbys-smart-contract-vulnerability
https://neptunemutual.com/blog/decoding-rabbys-smart-contract-vulnerability
https://neptunemutual.com/blog/decoding-rabbys-smart-contract-vulnerability
https://neptunemutual.com/blog/decoding-transit-finances-contract-vulnerability/
https://neptunemutual.com/blog/decoding-transit-finances-contract-vulnerability/
https://neptunemutual.com/blog/decoding-transit-finances-contract-vulnerability/
https://neptunemutual.com/blog/how-was-rubic-protocol-hacked/
https://neptunemutual.com/blog/how-was-rubic-protocol-hacked/
https://neptunemutual.com/blog/how-was-hashflow-exploited/
https://neptunemutual.com/blog/how-was-hashflow-exploited/
https://neptunemutual.com/blog/how-was-hashflow-exploited/
https://neptunemutual.com/blog/taking-a-closer-look-at-unibot-exploit/
https://neptunemutual.com/blog/taking-a-closer-look-at-unibot-exploit/
https://neptunemutual.com/blog/understanding-the-maestro-exploit/
https://neptunemutual.com/blog/understanding-the-maestro-exploit/
https://neptunemutual.com/blog/how-was-seneca-protocol-exploited/
https://neptunemutual.com/blog/how-was-seneca-protocol-exploited/
https://neptunemutual.com/blog/how-was-socket-protocol-exploited/
https://neptunemutual.com/blog/how-was-socket-protocol-exploited/
https://x.com/peckshield/status/1626493024879673344
https://x.com/peckshield/status/1626493024879673344
https://rarible.com/
https://mirror.xyz/revertfinance.eth/3sdpQ3v9vEKiOjaHXUi3TdEfhleAXXlAEWeODrRHJtU
https://mirror.xyz/revertfinance.eth/3sdpQ3v9vEKiOjaHXUi3TdEfhleAXXlAEWeODrRHJtU
https://mirror.xyz/revertfinance.eth/3sdpQ3v9vEKiOjaHXUi3TdEfhleAXXlAEWeODrRHJtU
https://revoke.cash
https://www.mavia.com/
https://www.mavia.com/
https://soliditylang.org/
https://github.com/ucsb-seclab/greed
https://github.com/ucsb-seclab/greed

[56]

[57]

[58]

[59]

[60]

Uniswap. Uniswap info. https : / /
v2.info.uniswap.org/home, 2024.

Uniswap Labs. Introducing permit2 & universal
router. https://blog.uniswap.org/permit2-and-
universal-router, 2022.

Yinxing Xue, Jiaming Ye, Wei Zhang, Jun Sun, Lei Ma,
Haijun Wang, and Jianjun Zhao. xfuzz: Machine learn-
ing guided cross-contract fuzzing. IEEE Transactions
on Dependable and Secure Computing, 2022.

Zhuo Zhang, Brian Zhang, Wen Xu, and Zhigiang Lin.
Demystifying exploitable bugs in smart contracts. In
2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 615-627. IEEE, 2023.

Zhijie Zhong, Zibin Zheng, Hong-Ning Dai, Qing Xue,
Junjia Chen, and Yuhong Nan. Prettysmart: Detecting
permission re-delegation vulnerability for token behav-
iors in smart contracts. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering,
pages 1-12,2024.

https://v2.info.uniswap.org/home
https://v2.info.uniswap.org/home
https://blog.uniswap.org/permit2-and-universal-router
https://blog.uniswap.org/permit2-and-universal-router

	Introduction
	Background
	Motivation
	Approach
	Approved Contracts
	Controllable TransferFrom
	Exploit Generation and Impact Analysis

	Evaluation
	Approved Contracts
	Controllable TransferFrom
	Exploit Generation and Impact Analysis
	Known Attacks
	Comparison with Existing Systems
	Other Standards

	Discussion and Limitations
	Related Work
	Conclusions
	Approvals Among Spenders
	Approvals Over Time
	Live Evaluation

